

Quantifying Benefits of Large-Scale Coastal Restoration

Craig Fischenich and Kyle McKay U.S. Army Engineer Research and Development Center (ERDC) Environmental Laboratory

> Environmental Benefits Analysis (EBA) Seminar March 24, 2009

Overview

Acknowledgements

- EBA Research Program
- New Orleans District
- FWS: Ronny Paille, Tamieka Armstrong
- NRCS: Ron Boustany
- LACPR Habitat Evaluation Team

Overview

- Louisiana Coastal Protection and Restoration (LACPR)
- Metric Selection
- Flow Diversion Model
- Applications
- Future Thoughts and Closing Remarks

Louisiana Coastal Protection and Restoration (LACPR)

- Wetland Loss: 77 km²/yr since 1978
- Hurricanes Katrina and Rita
- Congressional Mandate to "conduct a comprehensive hurricane protection analysis and design...to develop and present a full range of flood control, coastal restoration and hurricane protection measures"
- Make recommendations to Congress

Habitat Evaluation Team (HET): Overall Aim/Approach

- Build upon previous efforts and conventional knowledge
- Identify plans that sustain the integrity of the estuarine environments
- Decisions based upon HET consensus, informed where possible by analysis and quantification
 - Explicitly address uncertainty and identify means to manage risk

LACPR: Planning Units

PU1: Pontchartrain Basin PU2: Barataria Basin PU3a: Terrebonne Basin PU3b: Atchafalya Basin PU4: Chenier Plain

Coastal Restoration: Management Measures

Primary focus on measures that contribute to estuarine maintenance at a basin scale

Landscape Features

- Marsh creation
- Ridge/Chenier restoration
- Barrier island restoration
- Shoreline stabilization

Freshwater Diversions

Prioritizations

		Structural	Function	Synergy w
PU	Creation & Protection Features	Import.	Lifespan	Diversion
За	3D R-east red polys (9,10,11,16,19,21,22,28)	3	3	1
Зa	Terr Bay N. Rim (Jean Ch. To B.Terr)	3	3	1
Зa	South Caillou Lake Landbridge MC (polys 20-22)	3	3	0.5
За	Timbalier Islands Restoration	3	3	0
Зa	Isle Demiers Restoration	3	2	0
За	DuLarge-Grand Caillou Landbridge MC	2	3	1
Зa	Small Bayou la Pointe Ridge	2	3	1
Зa	3D R-east orange polys (S1,13,17,20,29,30)	2	3	0.5
За	Bayou DuLarge Ridge	2	2	1
Зa	3DR-west green polys (1,2,3,4,8)	2	2	0.5
За	South Caillou Lake Landbridge MC (polys 19,23,24)	2	2	0
3a	Bayou Pointe au Chene Ridge	2	2	0
3a	3D R -east blue polys (8)	1	3	1
За	3D R-west blue polys (5,6,7)	1	3	0
Зa	Terr Bay N. Rim (Pt.Chen to JeanCh.)	1	2	1
Зa	Margaret's Bayou Ridge	1	2	1
3a	Terr Bay N. Rim (Lafch to Pt.Chene)	1	1	1
3a	Terr Bay N. Rim (B.Terr to west end)	1	1	0
Зa	Bayou Terrebonne Ridge	0	3	0
3a	3DR-east green N polys (2,7,12,14)	0	2	1
Зa	3D R-east green S polys (N1,3,4,5,6,15,16,18,23-27)	0	2	0

Identifying Metrics

- Conceptual Models
- Risk-Informed Decision
 Framework (RIDF)
 - Multi-Criteria Approach
- Coastal Restoration Metrics
 - Storm Damage Reduction
 - Estuarine Spatial Integrity
 - Wetland Acreage

Storm Damage Reduction

- Benefits quantified as reduction in Expected Annual Damages (\$)
- Analysis using ADCIRC-STWAVE models for with- and without-coastal features
- Uncertainty resistance, bathymetry, economics
- Stage-frequency curve integrated with stage-damage curve for benefits

Spatial Integrity

- Conceptual approach defines the landscapes by:
 - Structure: the spatial relationship among distinct wetland patches or their elements
 - Function: the flow of mineral nutrients, water, energy, or species among component patches or between landscapes
 - Change: the temporal alterations in the structure and function of landscapes or their components
- Premise: structure, function and change of patches affect fundamental ecosystem processes, which determine the trajectories of ecological condition.

Spatial Integrity Classification

Hydro	Connectivity	Fisheries				Land Stability			
1 0.0417		10	0.0417	n417					
28	0.0411	1	0.0411		9	0.0833			
3B	0.0000	24	0.0000		6B	0.0000			
20	0.1200	84	0.1200		5B	0.1200			
4B	0.2083	9	0.1001		50	0.2083			
2A	0.2500	3A	0.2500		4C	0.2500			
3C	0.2917	7A	0.2917		2C	0.2917			
4C	0.3333	2B	0.3333		7C	0.3333			
5B	0.3750	6A	0.3750		80	0.3750			
3A	0.4167	5A	0.4167		4B	0.4167			
4A	0.4583	4A	0.4583		3C	0.4583			
6B	0.5000	8B	0.5000		3B	0.5000			
5C	0.5417	2C	0.5417		6C	0.5417			
7B	0.5833	7B	0.5833		2B	0.5833			
5A	0.6250	8C	0.6250		8B	0.6250			
6C	0.6667	3C	0.6667		7B	0.6667			
7C	0.7083	3B	0.7083		6A	0.7083			
6A	0.7500	6B	0.7500		7A	0.7500			
8B	0.7917	7C	0.7917		5A	0.7917			
7A	0.8333	4C	0.8333		8A	0.8333			
8C	0.8750	6C	0.8750		4A	0.8750			
8A	0.9167	4B	0.9167		3A	0.9167			
9	0.9583	5C	0.9583		2A	0.9583			
10	1.0000	5B	1.0000		1	1.0000			

Spatial Integrity Example (cont)

Wetland Acreage

- Existing
- Created with Dredged Material
- Created by Diversion
- Effective Land Loss Rates

Wetland Acreage: Freshwater Diversions

- Sediment and nutrient inputs offset losses due to consolidation, subsidence, SLR, erosion, etc.
- Limited replication of historic deltaic processes

Model Selection

Selection Criteria:

- Inorganic (sediment) and organic (nutrient-growth) components
- Rapid application
- Readily available data
- Uncertainty Analysis

CWPPRA Diversion Model

	Α	В		А	В
1	Site	Sample	42	TY	Area
2			43	0	807
3	Flow Rate (cfs)	650	44	1	806
4	Number of daus	365	45	2	806
5	Acre-ft of water	474500	46	3	805
6	Volume of water (L)	5.85E+1	47	4	805
7			48	5	804
8	Nutrients		49	6	803
3	Productivitu Bate (odw m ⁻² u ⁻¹)	2653	50	7	803
10	* Betention	502	51	8	802
11	× N/P	152	52	9	802
12	am ² NP	29 795	53	10	801
12	kalactes NP (Required)	161 112	54	11	801
10	NP Concentration (net)		55	12	800
15	Total ND (ka) (Ausilable)	070000	56	13	800
10	Nutrient Detential Acres	010020.0	57	14	/99
10	Nuclence Potential Acres	0.002	58	61	795
10	Land Loss hate	-0.63%	09	10	/38
18	Nutrient Acres	8.8	60	17	/98
13	Codiments		62	10	707
20	Sediments		62	13	790
21	ISS Concentration (mgrij	70	63	20	730
22	Bulk Density (g cm [*])	0.16	65	21	795
23	% Retention	15%	66	23	795
24	Average Depth (ft)	10	67	24	794
25	TSS (g) (Available)	4.10E+10	68	25	794
26	Sediment Potential Acres (acre-ft y ⁻¹)	207.6	69	26	793
27	Sediment Acres	31.1	70	27	793
28			71	28	792
29	TY1 Acres (Gross Annual Acres)	49.9	72	29	792
30	TY50 Acres	999	73	30	791
31	TY100 Acres	4994	74	31	791
32			75	32	790
33	Area (acres)	8073	76	33	790
34	Annual Land Loss Rate	-0.69%	77	34	789
35	Annual Land Loss	-55.7037	78	35	789
36	Adjusted Annual Net Acres	-5.8	79	36	788
37	Adjusted Land Change Rate	-0.07%	80	37	788
38			81	38	788
39	Area Sustained (zero loss rate)	7238	82	39	787
40			83	40	

Why modify the CWPPRA model?

Other tools were:

- Overly complex for LACPR timeline
- Unable to rapidly examine operational and structural differences
- Key Model Assumptions
 - Nutrients reduce land loss rate, but do NOT contribute to marsh accretion
 - Only NET nutrient increase is considered
 - Spatially uniform, simplified marsh geometry
 - Temporal resolution
 - Only represented intra-annually, not in a continuous format
 - Organic accumulation is not seasonally driven
 - No habitat switching with time
 - No vegetative component to settling/roughness
 - Additional loss mechanisms are not addressed canals, rainfall, tidal flows, waves, or hurricanes
 - Sheetflow assumed for all diversion flow rates
 - Uniform distribution of sedimentation.

Changes to CWPRA Model

Discharge specification options Steady or varying Flow duration option Coupling to river flows Sediment loading options Concentration or load May be specified as a rating Sediment disposition computation Rouse settling velocity Particle size dependent Accounts for flocculants Includes tidal velocity Bulk density **Stochastic analyses**

Desktop Model

×	Microsoft Excel - EHAM-09-25	5-2007-0	Caernarvo	n							_ C 🕹 🞽
:2] <u>File E</u> dit <u>V</u> iew Insert F <u>o</u> ri	mat <u>T</u> oo	ols <u>D</u> ata	<u>Window H</u> elp Ado <u>b</u> e PDF					Тура	e a question	forhelp 🚽 🗕 🗗 🗙
: -		 	- -			ib	1 100 130	No Los			
: 4		1 🕒 T (12	7 • (= • 😹 Z • އ ć 🛄 🖅 /5% 💽		security	• 🖄 🗡	· 🚾 🙅 📮			
1	a 🖆 🖄 🖉 💁 🏹 🗇 🏷 I	🌒 🖏	()]⊇ ₩¢ F	Reply with Changes End Review							
A		<u>1</u>		= \$ % , \$ \$ ¥ ≇ ⊡ • 🔗	* 🚢 * 📕 🖳		*	T 🛛 • 🗉 🔲 🖬 🖓 🗞 🗧			
	A2 🔻 🏂 Key:										
-	A	В	C	DE	F	G	н		J	К	L M
Eco-Hydraulic Marsh Accretion Model (MAM) for Quantifying Benefits of Flow Diversion on Coastal Marshes											Marshes
2	Key:	Calculated		Model User	Kule McKau			Number of iterations for Uncertainty Analysis Put Button here for running model	1000		
4		Output		Diversion Site	Caernarvon		i i				
5		Problem		Simulation Name	TestRun_09-07-2007						
6											
7	General System Properties			<u>Nutrient Model</u>				Sediment Budget			Hydrologic
8		Mean	Std Dev	Input Nutrients	Mean	Std Dev		Sediment Loading	Mean	Std Dev	Average Appli:
Ě		1 - IS GIT	City Det 1		1-is an	010.011		Change TCC Conceptuation Insul Mathe		Sudia un Debia	
10	Initial Land Area, A (ac)	125155	0	Source Conc of N and P, 770 rd (mg/L)	1.50	0.2	· ·	Choose 155 Concentration input Method:			Annual Dischar
11	Initial Project Area, A , (ac)	259878	0	Nutrient Retention, R and (%)	50	10		Manual TSS Concentration (mg/L)	45	5	
12	Initial Water Area, A 🖉 (ac)	134723	0.05	<i>77.0₽ ,,</i> (kg)	1509661			Sediment Rating of River, Coefficient	0.0109	0.00109	Start Date of S
13	Average Water Depth, 74 (H)	3.0	1000	Nutrient Requirements of Marsh				Sediment Hating of Hiver, Exponent Average TSS from Sediment Bating (mg/L)	1.2297		Final Date of S
15	Average Length, Z (ft)	98598	1000	Plant Productivity Rate, P, (g/m ² y ⁴)	3000	600		inerage roomon ocament having (highz)			
16				Percent of Plant Biomass made of N and P. ** (*)	930	01		Choose Sediment Retention Method:	Calculated		Date
17	Land Change Bate A (%/ur)	-0.98	0.05	7///P (a/m ² ii)	20.40	0.1		Manual Specified Sediment Betention $\mathcal{B}_{+}(\mathbf{v})$	50	10	8/1/1991
18	Land Change Bate	-1226.5	0.00	7/VP (kolacju)	82.55	-		Average Calculated Sediment Retention, $R \in (V)$	93.96	10	8/2/1991
19		1220.0	_	7700 xxq (ngrao-g)	02.00			Herage Substated Sediment Heterition, 55 (74)	00.00		8/3/1991
20	Maximum Tidal Velocity, U sugar (RIs)	0.6	0.1	Area Supported by Nutrient Addition, A	9144			Annual Net Mass of Sediment Loaded, AV 🚙 (kg)	2.26E+07		8/4/1991
21	Roughness Height, z. (ft)	0.003	0.0001								8/5/1991
22								Size fraction by mass, 🌾 of:			8/6/1991
23	Clear	Pacia D	o culto	Clear Monte Carlo				fine sand	0.01	0.001667	8/7/1991
29	ClearE	Dasic Re	esuits	Boculto from Output				clau	0.83	0.105	8/9/1991
26	fro	m Outp	ut	Results from Output				flocs	0.5	0.066667	8/10/199
27				Conduct Monto Corlo							8/11/1991
28	Conduct Basic		ISIC	Conduct Monte Carlo				Fall Velocity, 1/2, (m/s) of:			8/12/199
29	Α	nalysis		Analysis				fine sand	0.01	0.000833	8/13/199
30		-						clau	0.00003	5.83E-07	8/15/199
32								flocs	0.0002	1.67E-05	8/16/199
33	Must push "E9" after exteriou										8/17/199
34	new values in order to toget							Sediment Requirements of Marsh			8/18/199
H	✓ ► ► Notes / Boustany \ Ir	nput / 🤇	alculator	/ MC Calculator / MCResults / Output / Area / '	%Change / Proh	/	<	Phoose march tupe to celest bulk density or manually input-	II BLEDGE (C	-1. [+]	
1.			- 41 - 7			,				,	
: Dr	aw 🔻 😼 🛛 AutoShapes 🔻 🔪 🔌		🗀 🖪 🖏	[🙆 🖄 🛂 T 🚄 T 📥 T 💳 🚟 😂 💷 💷	7						

Model Testing: Caernarvon

Uncertainty Analysis

- Parameter: Monte Carlo Simulation
- Scenario: Sea Level Rise

Limiting Factors

- Total diversion discharge < 525,000 cfs (confirmation and refinement needed)
- Annual sediment availability ~ 30M c.y. (figure disputed; alternate sources?)
- Mechanical marsh creation production rate roughly 900 ac/yr/dredge (total number of dredges constrained)
 - Dredging costs not considered a constraint, but are a key consideration

Restoration Alternatives

- 1. Do Nothing (FWOP)
- 2. LCA 10130 (PBMO)
- 3. State Master Plan
- 4. EIS Alternative 4

- 5. MC features + medium diversion
- 6. MC features + pulsed diversion

PU1-Pontchartrain; Alternative 5

- Blind River Diversion flows for sustaining entire south Maurepas swamp split between Blind River and Hope Canal
- Hope Canal Diversion flows for sustaining entire south Maurepas swamp split between Blind River and Hope Canal
- LaBranche Diversion diversion directly into LaBranche wetlands to sustain those wetlands
- Bayou Bienvenu Diversion to reduce East New Orleans landbridge loss rates by 50%
- East New Orleans land bridge Marsh Creation 7,996 acres @ 900 acres/year
- Bayou LaLoutre Diversion (In lieu of Violet) sized to sustain the Biloxi Marshes
- Biloxi Marshes Shore Protection 254,500 linear feet of protection around outer perimeter
- Biloxi Marshes Marsh Creation 33,553 acres of marsh creation with armored containment dikes where not already provided by Biloxi Marshes Shore Protection measure
- Bayou Terre aux Boeufs Diversion flows to sustain marshes between MRGO and Bayou Terre aux Boeufs
- Bayou Terre aux Boeufs Marsh Creation 2,591 acres in upper basin
- Breton Sound Strategic Land Bridge a band of marsh from MRGO to Miss. River (14,579 acres) plus marsh creation along either side of Bayou LaLoutre
- Caernarvon Diversion sized to sustain all marshes between Bayou Terre aux Boeufs and the Miss. River
- Caernarvon Area Marsh Creation Marsh creation along protection levee from Big Mar south to Pheonix (4,936 acres)
- Bayou Lamoque Diversion to sustain receiving area marshes
- Grand Bay Diversion sized to sustain receiving area marshes

LACPR: Polygon Scale

LACPR: Basin Scale

Operational Alternatives

Structural Alternatives

Future Enhancement

- Donaldsonville to the Gulf
 - Spatially distributed delta growth
 - Continuous simulation
 - Land loss rate thresholds
- Future Improvements:
 - Update nutrient module to resolution of sediment module: seasonality, eutrophication, multiple limiting factors
 - Spatially distributed modeling
 - Improved hydrodynamic assessments canals, erosion, shallow distributed flows

Conclusions

LACPR required rapid development of alternatives and solutions

- Multi-Criteria Approach
- Use of conceptual models for metric identification
- Storm Damage Reduction, Spatial Integrity, Wetland Acreage
- Flow diversion = common restoration measure
- Screening of location, magnitude, structure type, and operation was needed
- LACPR Flow Diversion Model
 - Adapted from existing tool
 - Updated based on known processes and time constraints
 - Parameter and scenario uncertainty analyses conducted

Questions?

<u>Contact Information</u>: Craig Fischenich 601-634-3449 <u>Craig.J.Fischenich@usace.army.mil</u>

Kyle McKay 706-850-1974 Kyle.McKay@usace.army.mil

LACPR Information: http://lacpr.usace.army.mil/

Forthcoming Publications:

McKay, Fischenich, and Smith. Quantifying Benefits of Flow Diversion to Coastal Marshes I: Theory. In preparation for *Ecological Engineering*.

McKay, Fischenich, and Paille. Quantifying Benefits of Flow Diversion to Coastal Marshes II: Application to Louisiana Coastal Protection and Restoration (LACPR). In preparation for *Ecological Engineering*.

McKay and Fischenich. Considering Uncertainty in Environmental Benefits Analysis: Coastal Wetland Restoration Case Study. *ERDC TN-EMRRP-EBA*. U.S. Army Engineer Research and Development Center, Vicksburg, Mississippi. <u>http://cw-environment.usace.army.mil/test/eba/index.cfm</u> 30