USACE Climate Change Update Part Il

Ecosystem Restoration Learning Exchange
6 September 2011

Kate White, PhD, PE
Jeff Arnold, PhD
Rolf Olsen, PhD

-—®




Recap: Summary Webinar Part |

Climate change adaptation is an active area
for the USACE CW program because of

lessons-learned from Hurricane Katrina and
observed hydrologic and sea-level changes

The climate change commitment requires
both adaptation and mitigation

Adaptation is challenging and has a longer
time frame, but we are making progress

— Pilots provide new knowledge

— District-led guidance updates develop new
knowledge

More to comel
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Planned Webinar Part Il

Nationwid Ing-level climate

change asse ent of the vulnerability
of CW missj operations, programs,
and proje€Tts to climate change and
variability

Progress on climate guidance
Integration of adaptation and mitigation
Ecosystem considerations
FY11 adaptation pilots (35 proposals!

p p (35 prop
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Climate change isn't some rague
future problem—it’s already
damaging the planet at an alarming
pace, Here's how it affects you, your
kids and their kids as well
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Already Maladapted to Climate Variation Events
Billion Dollar Weather Disasters 1980 - 2010
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“It Is the policy of USACE to
Integrate climate change
adaptation planning and actions
INnto our Agency’s missions,
e operations, programs, and
-

“...using the best available —
and actionable — climate
science and climate change
Information...”

“...shall consider potential
climate change impacts
when undertaking long-
term planning, setting
priorities, and making

decisions.....” @
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“Mainstreaming
climate change
adaptation means that
It will be considered at
every step in the
project life cycle for all
USACE projects, both
existing and planned...
to reduce
vulnerabilities and
enhance the resilience
of our water-resource
Infrastructure.”

- USACE Policy Statement
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Sea Level Is Changing

Observed sea-level trends (NOAA), Coastal Vulnerability Index (USGS), USACE
Projects, and Port Tonnage on map of Population Density (Census)
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Sea Level is Changing - Close-up
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Moving Science Into Action

1986:
2000:

observed trends
planners consider

potential for increased

global sea-
3 scenarios
adds recent science
Adaptation early 2012

20009:
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Moving Science Into Action

Tide Level above STND (ft)
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Flood every
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We have a reasonable
. =¥._=f science base for
oz e 2o 7.1 changes occurring in
' ®>20d earlier g . western snow-

@ 15-20d earlier
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1 5-10d later
© 10-15d later
® 15-20d later
® > 20d later

© 10-15d earlier T"%* & | dominated watersheds
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CT= Center of mass of annual flow fo——
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We have some - . -
science around snow- s
dominated watersheds piec.
in the Northern Plains X
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CLIMATE CHANGE

Stationarity Is Dead:
Whither Water Management?

P.C.D. Milly* Julio Betancourt.? Malin Falkenmark.* Robert M. Hirsch.* Zbigniew W.
Kundzewicz® Dennis P. Lettenmaier,’ Ronald J. Stouffer’

ystems for management of water
S throughout the developed world have

been designed and operated under the
assumption of stationarity. Stationarity—the
idea that natural systems fluctuate within an
unchanging envelope of variability—is a
foundational concept that permeates training
and practice in water-resource engineering. It
implies that any variable (¢.g., annual steam-
flow or annual flood peak) has a ime-invari-
ant {or 1-year-periodic) probability density
fimction (pdf), whose properties can be esti-
mated from the instrument record. Understa-
tonarity, pdf estimation errors are acknowl-
edged but have been assumed to be reducible
by additional observations, more efficient
estimators, or regional or palechydrologic
data. The pdfs, in turn, are used to evaluate
and manage risks to water supplies, water-
works, and floodplains; annual global invest-
ment in water infrastructure exceeds
U.S.8500 billion ().

The stmtionarity assumption has long
been compromised by human disturbances
in river basins. Flood risk, water supply, and
water quality are affected by water infra-
structure, channel modifications, drainage
works, and land-cover and land-use change
Two other (sometimes indistinguishable)
challenges to stationarity have been exter-
nally forced, natural climate changes and
low-frequency, internal variability (e.g., the
Atlantic multidecadal oscillation) enhanced
by the slow dynamics of the aceans and ice
sheets (2, 3). Planners have tools to adjust
their analyses for known human distur-
bances within river basins, and justifiably or
not, they generally have considered natural
change and variability to be sufficiently
small to allow stationarity-based design.

*US. Geological Survey (USGS), o Mational Oceanic and
Atmospheric Administration (NOAA) Geaphysical Auid
Dynamics Laboratary, Princeton, N] 08540, USA. 2USGS,
Tucson, AZ 85745, USA. *Stockholm Interational Water
Institute, SE 11151 Stockholm, Sweden. *USGS, Reston,
WA 20192, USA. “Research Centre for Agriculture and
Farest Environment, Polish Academy of Sciences, Poznai
Foland, and Potsdam Instiute for Climate Impact
Research, Potsdam, Germany. “University of Washington,
Seattle, WA 96195, USA. "NOAA Geophysical Fuid
Dynamics Laboratary, Princeton, N) 0BS540, USA.

*Authar for correspondence. E-mait: cmilly@usgs gov.

An uncertain future challenges water planners.

In view of the magnitude and ubiquity of
the hydroclimatic change apparenty now
under way, however, we assert that stationarity
isdead and shouldno longer serve as a central,
default assumption in water-resource risk
assessment and planning. Finding a suitable
successor is crucial for human adaptation to
changing climate.

How did swationariry die? Stationarity is
dead because substantial anthropogenic
change of Earth’s climate is altering the
means and extremes of precipitation, evapo-
transpiration, and rates of discharge of rivers
(4. 5) (see figure, above). Warming aug-
ments atmospheric humidity and water
transport. This increases precipitation, and
possibly flood risk, where prevailing ammo-
spheric water-vapor fluxes converge (f)
Rising sea level induces gradually height-
ened risk of contamination of coastal fresh-
water supplies. Glacial meltwater temporar-
ily enhances water availability, but glacier
and snow-pack losses diminish natural sea-
somal and interannual storage (7).

Anthropogenic climate warming appears
to be driving a poleward expansion of the
subtropical dry zone (), thereby reducing
runoff in some regions. Together, circulatory
and thermodynamic responses largely
explain the picture of regional gainers and
losers of sustainable freshwater availability

Climate change undermines a basic assumption
that historically has facilitated management of
water supplies, demands, and risks.

that has emerged from climate models (see
figure, p. 574).

Why naw? That anthropogenic climate
change affects the water cycle (9) and water
supply (/) is nota new finding, Nevertheless,
sensible objections to discarding stationarity
have been raised. Fora time, hydroclimate had
not demonstrably exited the envelope of natu-
ral varabili f the effective range of
optimally operated infrastructure (17, /2).
Accounting for the substantial uncertainties
of climatic parameters estimated from short
recards (/) effectively hedged against small
climate changes. Additionally, climate projec-
tions were not considered credible (12, 14).

Recent developments have led us to the
opinion that the time has come to move
beyond the wait-and-see approach. Pro-
jections of nunoff changes are bolstered by the
recently demonstrated retrodictive skill of cli-
mate models. The global pattern of observed
annual streamflow trends is unlikely to have
arisen from unforced variability andis consis-
tent with modeled response to climate forcing
(15). Palechydrologic smdies suggest that
small changes in mean climate might produce
large changes in extremes (i6), although
attempts to detect a recent change in global
flood frequency have been equivocal (17,
18). Projected changes in runoff during the
multidecade lifetime of major water infra-
structure projects begun now are large
enough to push hydroclimate beyond the
range of historical behaviors (19). Some
regions have little infrastructure to buffer the
impacts of change

Stationarity cannot be revived. Even with
aggressive mitigation, continued warming is
wvery likely, given the residence time of
atmospheric CO, and the thermal inertia of
the Earth system (4, 20).

A successor. We need to find ways to
identify nonstationary probabilistic models
of relevant environmental variables and to
use those models to optimize water systems.
The challenge is daunting. Patterns of
change are complex; uncertainties are large;
and the knowledge base changes rapidly.

Under the rational planning framework
advanced by the Harvard Water Program
(21, 22), the assumption of stationarity was

“Climate change
undermines a
basic assumption
that historically
has facilitated
management of
water supplies,
demands, and
risks.”

www.sciencemag.org SCIENCE VOL319 1FEBRUARY 2008 573
Publshed by AAAS

Stationarity allows us to assume that
the statistical properties of hydrologic
variables in future time periods will be

o : : =
similar to past time periods = BUILDING STRONG..




Climate impacts to weather

What Is an Extreme?

(a) Temperature

Cold Hot

temperature tem Jratura
axtrames extremes

N <

T
Average Hol

Probability of occurrence
—

Cold

(b) Precipitation

Probability of occurrence
—_—

Average

Heavy

http://www.climatescience.gov/Library/sap/sap3-3/final-report/sap3-3-final-all.pdf

Probability of occurrence

Probability of occurrence

Increase in Probability of Extremes in a Warmer Climate

(a) Temperature
More
Previous hot
climate = westher
More

Less record hot
cold weather
weather
1
Cold Average Hot
(b) Precipitation
&/ Less
predhit'éttiun
Previous
& climate More
heavy
New precipitation
climate &
| |
T T T
Light Average Heavy
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Intensity: Drought Impact Types:
[] DoAbnormaly Dry r~ Delineates dominant impacts
[] D1 Drought - Moderate A= Agricultural (crops, pastures,

[ D2 Drought - Severe grasslands)
I D3 Drought - Extreme H = Hydrological (water)

April 19, 2011

Valid 8 a.m. EDT

I D4 Drought - Exceptional

The Drought Monitor focuses on broad-scale condiions.
Local conditions may vary. See accompanying text summary

i 2>

USDA ' -
YO

for forecast stalements.

http:Hdrnught.unI.adu;‘dm Author: Michael Brewer/L. Love-Brotak, NOAA/NESDIS/NCDC

Released Thursday, April 21, 20

Drought doesn’t protect us from floods ......

®
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Floods don’t protect us from drought ......

orpsMap UOC L) Query Layer:
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* National Common Operating Picture
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Flooding, drought hurt farm income in
region

Bv The Associated Press on August 15, 2011
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U.S. Drought Monitor

August 9, 2011

Valid & a.m. EDT

Intensity

[] DO Abnermally Dry

[] D1 Drought - Moderate
[ D2 Drought - Severe
I D3 Crought - Extreme
I D3 Drought - Exceptional

Drought impact Types

r~ Delineates dominant impacts

A = Agricultural (crops, pastures
grasslands)

H = Hydrological (water)

_ - _
P
_ ) USDA P @) &
The Drought Monitor focuses on broad-scale conditions. = | ";;'\;T‘_W ol 3y

Local conditions may vary. See accompanying text summary
for forecast statements.

http://[drought.unl.edu/dm

Released Thursday, August 11, 2011
Author: Laura Edwards, Wesfern Regional Climate Center

®

BUILDING STRONGg,




Water

e im Lomg.T
Resources Planaing and Managemant
U ot o g Toon st

=USGS . @ @

Climate Change and Water Resources Management:
A Federal Perspective

What do

Climate Change Adaptation

Cicar 1331 k now 7 Coralville Lake Pilot Study

U5, Daparsmmant of vhe bmron i, Fyaraiogy anayorauics Brincn
U5 Gostegeral farvey b
..... i
(

What do
the

pilots }

tell us? /

don’'t we

Doug Clemetson, Ryan Larsen - Hydrology
Dan Pridal, Jennifer Gitt - Sediment
USACE, Omaha District

Omaha, Netraska

25 July 2011
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Path Forward for Hydrology.....

Peer-Reviewed
Publication
Legally Justifiable

Broad
Guidance

Refined
Guidance

Workshop
Expert Opinions
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Integrating Adaptation and Mitigation

e Adaptation: Successfully perform our U
missions, operations, programs, and
projects in an increasingly dynamic physical,
socioeconomic, and political environment

e Mitigation: Increase our water and energy .
efficiency while reducing GHG emissions

 |Investments must be integrated
— so that we don’t implement near-term mitigation
measures now that will be overcome by longer-
term climate impacts requiring adaptation
— Or that a short-term mitigation action forestalls

a longer-term adaptation action

L
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USACE Mitigation

Ops POC: John Coho
ECoP POC: Antonia Giardina

Primarily energy and water conservation
and GHG emissions reduction

USACE has

set targets for 3 T
GHG emissions — iz
reductions by o
2020
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small s
(Mitigation, Conservation)

Avoiding the unmanageable .

Conserving energy and water,
decreasing GHG emissions

Problem well understood, science
available

Many methods and technologies
Inherently quantifiable (things)

Results closely tied to .
Implementation

Relatively low cost .

Sustainability

Big S (Adaptation)

Managing the unavoidable

Ensuring robust and resilient mission and
operations in an uncertain future

Problem not well understood (“wicked
problem”), little actionable science

Methods and technologies in development
Inherently qualitative (process)

May have long time period between
Implementation and observable change;
resulting changes may be difficult to
ascribe to actions, requires collaborative
approach that builds capacity and shares
knowledge

Low to high cost

BUILDING STRONGg,



Adaptation
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Electricity CO2 Equivalent Emissions by eGRID Region
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Ecosystems and Climate Change

« Examples from recent research:
— Loarie et al 2009: The velocity of climate change

— Jones et al 2009: Committed terrestrial ecosystem
changes due to climate change

— McDonald-Madden et al 2011: Optimal timing for
managed relocation of species faced with climate
change

— Chen et al 2011: Rapid range shifts of species
associated with high levels of climate warming

 Climate change encourages us to rethink our
assumptions about ecosystems, how they

function, and how they change over time

28 BUILDING STRONG,




e Chen et al 2011 “found that observed latitudinal and
elevational shifts (the latter more weakly) have been
significantly greater in studies with higher levels of

warming”

 Important factors were:

— Time delay in species
response (e.g., habitat
specialists or immobile
species)

— Physiological constraints
(e.g., sensitive to different
physical variable at
different life phases

— Alternate & interacting
drivers of change,
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Fig. 1. Relationship between observed and expected range shifts in response to climate change, for (A)
latitude and (B) elevation. Points represent the mean responses (+SE) of species in a particular tax-
onomic group, in a given region. Positive values indicate shifts toward the pole and to higher ele-
vations. Diagonals represent 1:1 lines, where expected and observed responses are equal. Open circles,
birds; open triangles, mammals; solid circles, arthropods; solid inverted triangles, plants; solid square,
herptiles; solid diamond, fish; solid triangle, mollusks.

Including nonclimatic factors
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National Ecological Observatory Network

(NEON)

« 20 core observatories representing distinct eco-
regions throughout the US

 Supplemented by temporary stations that can be

relocated wherever
data need to be
collected

e |ncrease our
understanding of
national-scale
changes

GROUND COVER

Permanent research stations (red circles) are broadly
representative of each of NEON's 20 eco-regions.
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FY11 Adaptation Pilots

Proposal Title

Topic

Applying Risk Informed Decision-Making Framework for Climate Change to Integrated
Water Resource Management (IRWM) Planning — West Maui Watershed Project

Using Physical and Collaborative Modeling to Assess the lowa-Cedar Watershed’s
Vulnerability to Climate Change and Develop Risk Informed Climate Change Adaptation
Strategies

Upland Sediment Production and Delivery in the Great Lakes Region under Climate Change

Developing a Framework for Incorporating Climate Change and Building Resiliency into
Restoration Planning Case Study — Lower Columbia River Estuary

Risk Informed Decision Making for Potential Sea-Level Rise Impacts on Wetland Restoration

Red River of the North Flooding at Fargo, ND

Utilization of Regional Climate Science Programs in Reservoir and Watershed Risk-Based
Impact Assessments
Climate Change Impact Evaluation Mountain Snowpack - Accumulation and Runoff

East Rockaway Inlet to Rockaway Inlet, NY Collaboration Framework Development

Summit to outer reef

lowa-Cedar Rivers

Great Lakes

Estuary-salmon habitat
restoration

Coastal Wetland Restoration

Red River Flooding

Watershed

Snow pack - Missouri River

Sea level

31

BUILDING STRONGg,



Summary

Climate is changing, especially impacting weather
extremes

Coastal policies and guidance ahead of hydrology

Collaborative efforts with other agencies help to
Identify long-tem and short-term user needs, develop
consistent guidance

Integrating adaptation and mitigation supports a
portfolio management approach with mix of near-term
and long-term actions

Recent research about climate change and ecosystems
encourages us to think in new ways
Adaptation pilot projects increase our understanding

and help ID gaps and areas where new guidance |
may be needed 32 BUILDING STRONG;




Background
Slides
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Background: IPCC Scenarios

@ INTERGOVERNMENTAL PANEL ON CLIMATE CHANGE
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Manning et al 2010 “Misrepresentation of the IPCC CO, emission scenarios” Nature Geoscience 3, 376 - 377
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