

Dam Removal Webinar Series

Part 1B: Dam Removal ~ Synthesis of the Science

(Part A Posted Separately)
October 27, 2020

- Jeff Duda
- Western Fisheries Research Center, Seattle
- jduda@usgs.gov

Dam removal in context

Order of Magnitude	Number of dams	
11,000,000	Estimated world wide dams (total) ¹	
2,000,000	Estimated U.S. dams (total) ²	
91,000	U.S. National Inventory of Dams ³	
1,700	Number of dam removals⁴	
262	Number of dam removal studies⁵	
196	Number of removed dams studied ⁵	
¹ Lehner et al. 2011		

²Graf 1993

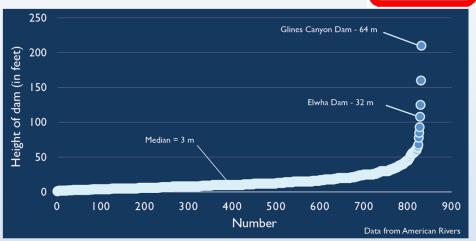
3U.S. Corps of Engineers 2018

⁴American Rivers 2020

5Duda et al. 2020

Dam removal in context

Order of Magnitude	Number of dams	
11,000,000	Estimated world wide dams (total) ¹	
2,000,000	Estimated U.S. dams (total) ²	
91,000	00 U.S. National Inventory of Dams ³	
1,700	Number of dam removals⁴	
262	Number of dam removal studies⁵	
196	196 Number of removed dams studie	

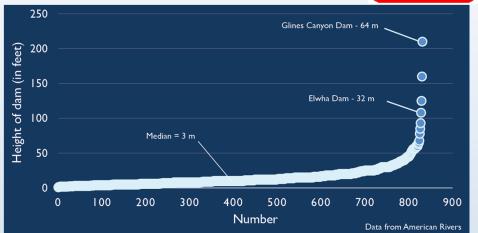

¹Lehner et al. 2011

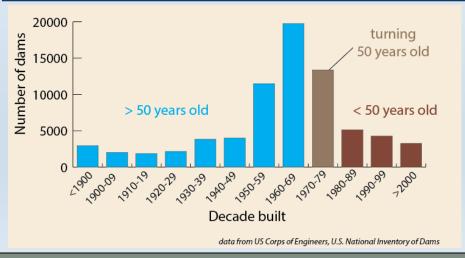
²Graf 1993

3U.S. Corps of Engineers 2018

⁴American Rivers 2020

5Duda et al. 2020




Dam removal in context

Order of Magnitude	Number of dams	
11,000,000	Estimated world wide dams (total) ¹	
2,000,000	2,000,000 Estimated U.S. dams (total) ² 91,000 U.S. National Inventory of Dams ³ 1,700 Number of dam removals ⁴	
91,000		
1,700		
262	262 Number of dam removal studies ⁵	
196	Number of removed dams studied ⁵	

¹Lehner et al. 2011

²Graf 1993

³U.S. Corps of Engineers 2018

⁴American Rivers 2020

⁵Duda et al. 2020

Dam removal responses: what do we know and why is it important?

Rising flood waters advance on Midland, Michigan, after the breach of the Edenville and Sanford dams.

Edited by Jennifer Sills

Preparing for proactive dam removal decisions

Science

Farshid Vahedifard^{1*}, Kaveh Madani^{2,3}, Amir AghaKouchak⁴, Sannith Kumar Thota¹

July 2020 "To move forward, we need a scientific and legal framework in place to evaluate if and when dam removal is required ..."

"To prepare for future decisions, scientists should document, share, and analyze the collected data and lessons from both past and ongoing dam removal missions."

USGS John Wesley Powell Center for Analysis and Synthesis

Working Group

Dam removal: synthesis of ecological and physical responses

USGS John Wesley Powell Center for Analysis and Synthesis

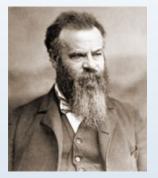
Working Group

Dam removal: synthesis of ecological and physical responses

John Wesley Powell Center for Analysis and Synthesis

Working Group

Dam removal: synthesis of ecological and physical responses


Goals:

- Data compilation and organization
- Create conceptual models
- Identification of key information gaps
- Assess management and policy implications

John Wesley Powell Center for Analysis and Synthesis

Working Group

Dam removal: synthesis of ecological and physical responses

My talk

Goals:

- Data compilation and organization
- Create conceptual models
- Identification of key information gaps
- Assess management and policy implications

Jennifer's talk

Conduct Literature Review

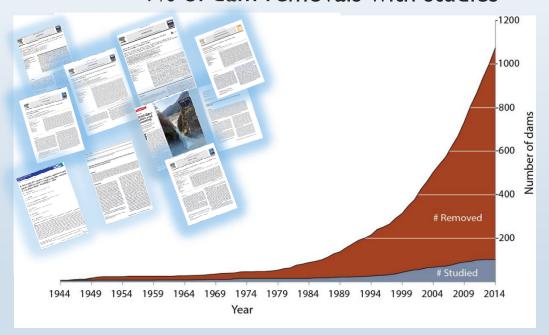
By Jun - https://www.flickr.com/photos/biker_jun/6141872902/, CC BY-SA 2.0

We searched

 Web of Science, Google Scholar, USGS
 Publication Warehouse, Clearinghouse for Dam Removal Information

Identified over 6,000 potentially relevant studies~Those with empirical data

- But only around 600 studies were related to dam removal
- Only 179 studies that contained empirical data on dam removal responses
- 139 studies of US dam removals (from 115 different dams)

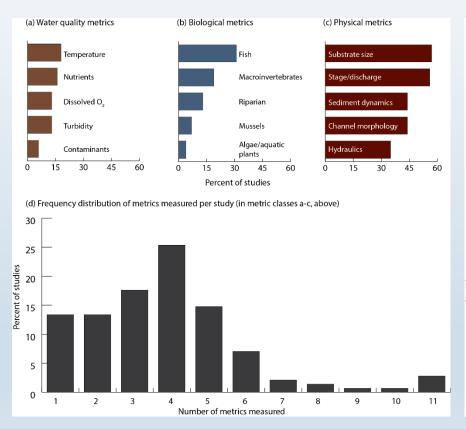


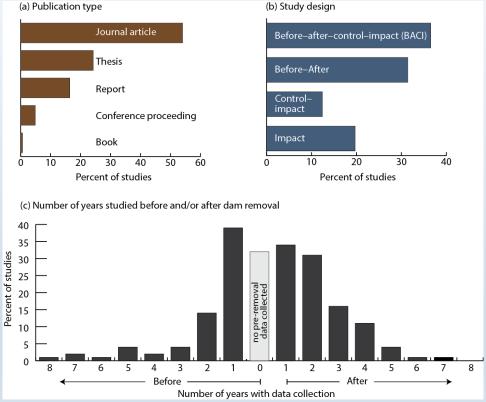
Literature Review

~ 9% of dam removals with studies

Advanced Review

Status and trends of dam removal research in the United States


WIREs Water DOI: 10.1002/wat2.1164.



Anatomy of the dam removal literature

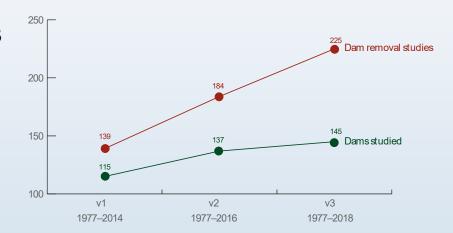
Bellmore et al. 2017 WIREs Water



Living databases on removed dam science

USGS Dam Removal Science Database v3

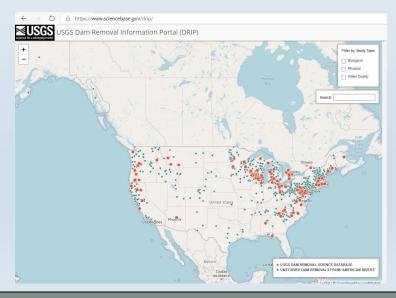
https://doi.org/10.5066/P9IGEC9G.



Living databases on removed dam science

USGS Dam Removal Science Database v3

https://doi.org/10.5066/P9IGEC9G.




Living databases on removed dam science

USGS Dam Removal Science Database v3

https://doi.org/10.5066/P9IGEC9G.

USGS Dam Removal Information Portal (DRIP)

https://sciencebase.gov/DRIP

An online geospatial instance of the USGS Dam Removal Science Database

Synthesis

@AGU PUBLICATIONS

COMMENTARY 10.1002/2017WR020457

The first six authors significantly contributed to the preparation of the Dam removal: Listening in

M. M. Foley¹ O, J. R. Bellmore² O, J. E. O'Connor³ O, J. J. Duda⁴ O, A. E. East¹ O, G. E. Grant⁵ O, C. W. Anderson⁶ O, J. A. Bountry⁷, M. J. Collins⁸ O, P. J. Connolly⁹ O, L. S. Craig¹⁰ O, J. E. Evans¹¹ O, S. L. Greene¹² O, F. J. Magilligan¹³ O, C. S. Magirl¹⁴ O, J. J. Major¹⁵ O, G. R. Pess¹⁶ O, T. J. Randle⁷ O, P. B. Shafroth¹⁷ O, C. E. Torgersen¹² O, D. Tullos¹⁸ O, and A. C. Wilcox¹⁹ O

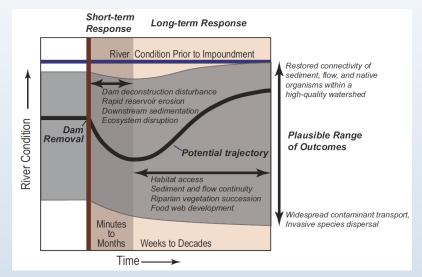
sciencemag.org SCIENCE

PERSPECTIVES

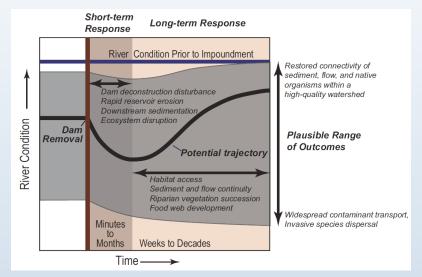
1000 dams down and counting

Dam removals are reconnecting rivers in the United States

Sy J. E. O'Connor,1 J. J. Duda,2

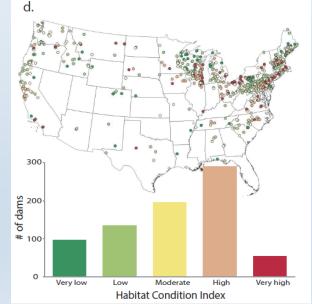

- **Sediment** rivers can move it upon removal (often without peak flows) redistributing it within the reservoirs and transporting it downstream.
 - Knickpoint migration via base-level fall and lateral channel migration drive transport
 - Rate of removal, character of sediment
- **Species** large turnover in reservoirs (lotic to lentic aquatic taxa); potential to homogenize up/downstream communities or introduce non-natives upstream
- Size matters dam height, reservoir size, sediment volume
- **Surprises happen** old dams can hide forgotten features
- Rapid responses rivers are resilient, but there are a wide range of recovery trajectories

Local conditions matter


Foley et al. 2019 Water Resources Research

A challenge in understanding and predicting recovery trajectories is that ecological responses vary spatially and temporally

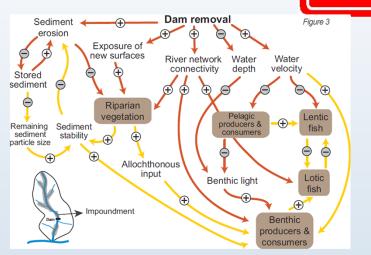
Local conditions matter



Foley et al. 2019 Water Resources Research

A challenge in understanding and predicting recovery trajectories is that ecological responses vary spatially and temporally

The local and regional context of each dam and watershed is distinct, and therefore, the responses to removal are unique.

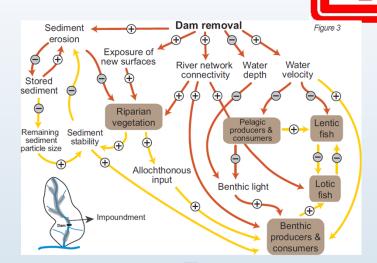


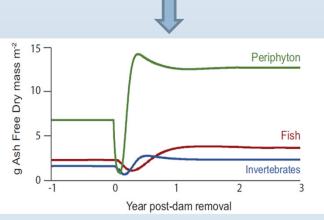
Foley et al. 2017 PLoS ONE

Ecological Responses to dam removal

Ecological responses to dam removal are *generally* governed by a **common set of physical and biological linkages and feedback loops**.

Bellmore et al. 2019 BioScience

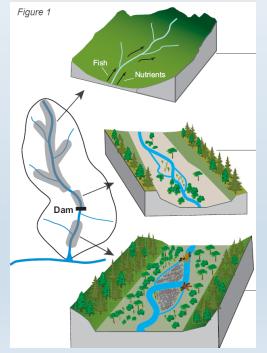



Ecological Responses to dam removal

Ecological responses to dam removal are generally governed by a common set of physical and biological linkages and feedback loops.

These shared linkages create dynamic, nonlinear ecological **response trajectories**, which are complex but *can* be predicted if the strength of the dominant linkages and feedback are known.

Bellmore et al. 2019 BioScience



Spatial domains and ecological responses to dam removal

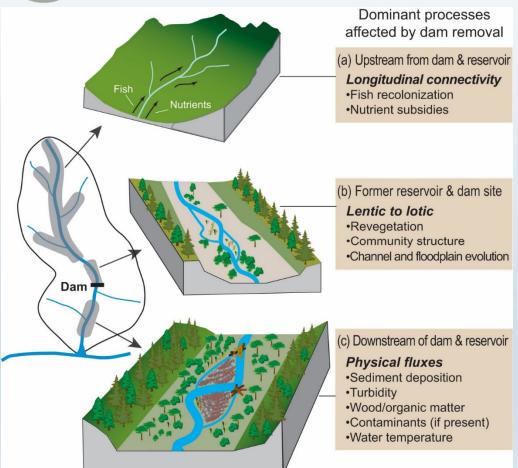
J. RYAN BELLMORE, GEORGE R. PESS, JEFFREY J. DUDA, JIM E. O'CONNOR, AMY E. EAST, MELISSA M. FOLEY, ANDREW C. WILCOX, JON J. MAJOR, PATRICK B. SHAFROTH, SARAH A. MORLEY, CHRISTOPHER S. MAGIRL, CHAUNCEY W. ANDRESSON. JAMES E. EVANS, CHRISTIAN E. TORGETSEM, AND LAURA S. CRAIG

Upstream

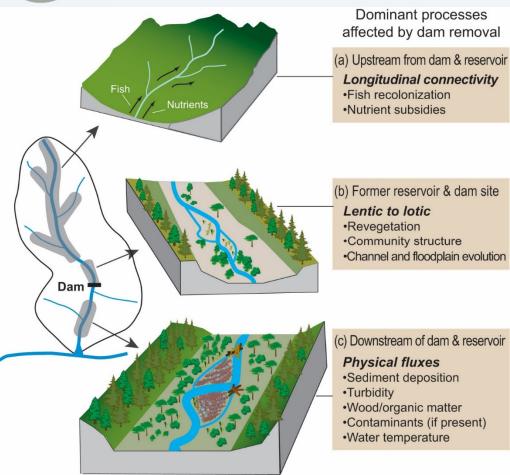
Reservoir

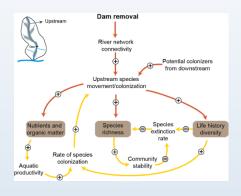
Downstream

Our Conceptual Models:

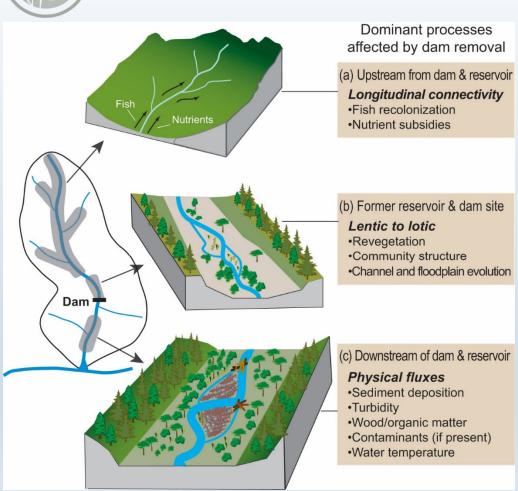

- Define the processes affecting ecological responses to dam removal
- Clarify how ecological transitions in each spatial domain are affected by dam removal
- Illustrate that responses are complex but *predictable*

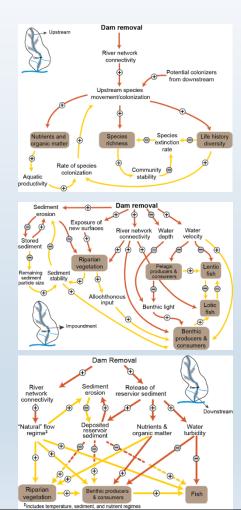
Spatial domains of dam removal





Spatial domains of dam removal





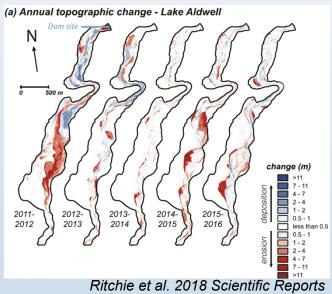
Spatial domains of dam removal

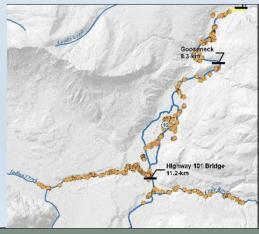
Examples from the Elwha River

- Short, steep mountainous river -72 km in length
- Watershed is 822 km², 83% is protected National Park wilderness
- Dams were 8 and 21 km from river mouth
- No fish passage at either dam

Upstream of the dams

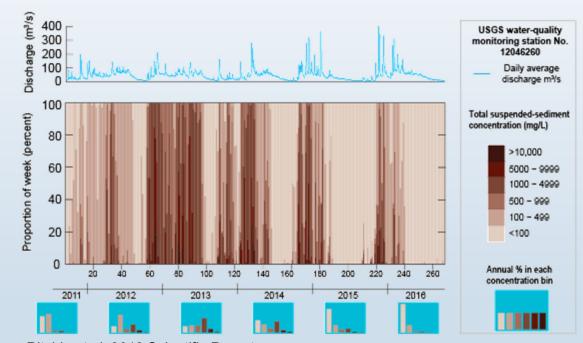
When the fish returned Different fish returned at different times upstream of the Elwha and Glines Canyon dams. - Glines Canyon Dam Elwha Dam Oct. Oct. Oct. Chum Coho Coho Summer steelhead Sept. Sept. Pink Chinook Aug. Aug. Aug. Aug. Pink **Bull trout** Chinook Summer steelhead July Sockeye July **Pacific** Sockeye lamprey June March Winter steelhead June May Winter steelhead **Pacific Bull trout** lamprey 2012 Jan. 2014 2015 2017 Jan. 2011 2013 2016 Sept. April Aug. Oct. Elwha Dam Elwha Dam Glines Canyon Glines Canyon Dam removed rock blasting removed removal begins Oct. Glines Canyon Data from NPS, NOAA, LEKT, FWS and USGS rockfall Visualization: Jeff Duda and San Brenkman MARK NOWLIN / THE SEATTLE TIMES

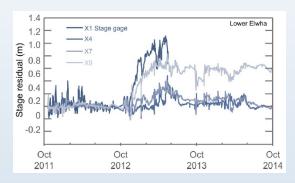

Former reservoirs

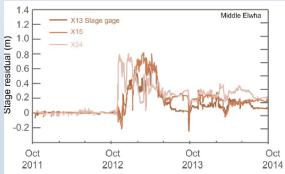

Sediment redistribution

Upland revegetation

Chinook spawning



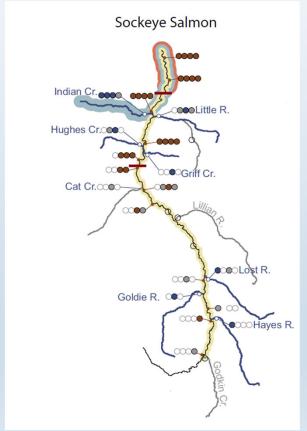

Downstream of the dams



Ritchie et al. 2018 Scientific Reports

Morley et al. 2020 PLoS ONE

Fishy surprises from the Elwha



Summer steelhead in the Elwha rise from the ashes TROUT FUNLIMITED

by <u>Sam Davidson</u> October 19, 2018

https://www.tu.org/blog/summer-steelhead-in-the-elwha-rise-from-the-ashes/

Duda et al. 2020 Environmental DNA

Dam Removal Webinar Series

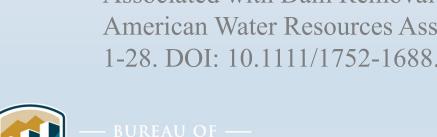
Part 1B: Dam Removal Case Studies

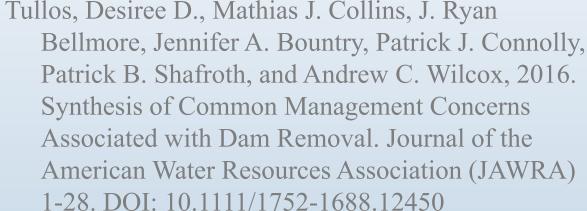
October 27, 2020

Jennifer Bountry, MS, PE

Manager, Sedimentation and River
Hydraulics Group and Environmental
Research Coordinator, Bureau of
Reclamation

Common Management Concerns: What Do the Case Studies Tell Us?





Acknowledgements

Working group on *Dam removal: synthesis of ecological and physical responses* of the U.S. Geological Survey John Wesley Powell Center for Analysis and Synthesis

Study objectives: "Myth Busters"

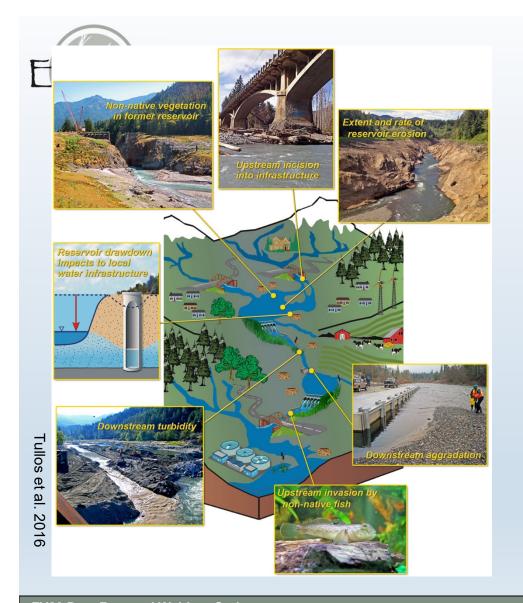
1. Articulate common management concerns (CMCs) and their potential negative consequences

What is a CMC?

Dam removal outcomes that may require intervention but are broadly assumed, sometimes incorrectly, to occur at most sites

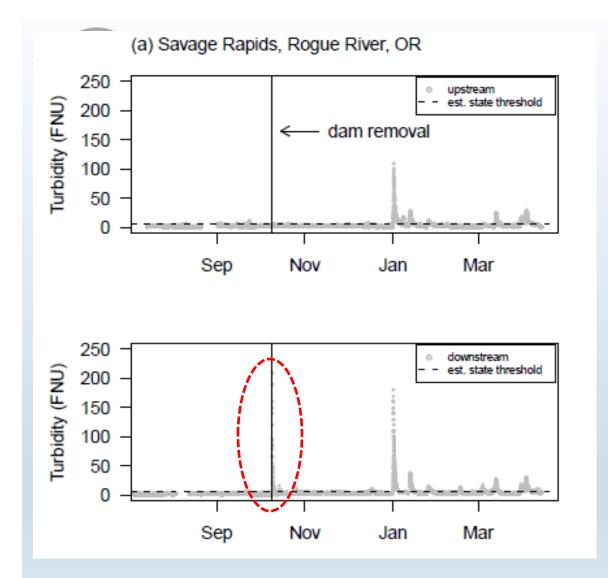
- 2. Identify where, and how commonly, CMCs occurred
- 3. Evaluate what conditions control their occurrence

Is this Bridge Located 2 miles Upstream of Elwha Dam Being Removed at Risk?



River Incision & Widening at Highway 101 3 Years After Elwha Dam Removal

- 1. Upstream incision into infrastructure
- 2. Non-native vegetation in former reservoir
- 3. Reservoir drawdown impacts to local water infrastructure
- 4. Downstream turbidity
- 5. Upstream invasion by non-native fish
- 6. Downstream aggradation
- 7. Extent and rate of reservoir erosion



How bad is this turbidity from Savage Rapids Dam removal in Oregon (scale 1 to 10)?

How long will it last (days, weeks, months)?

R	P CMC	Case studies	Biophysical process controls	Site conditions suggesting management implications
	Degree and rate of reservoir incision	N/A	high % of stored fine sediments average sediment deposit width/channel width > ~2.5 phased removal	stakeholder values; fish passage needs or sensitive habitats
	Excessive channel incision upstream of reservoir	38	 reach-scale incision d/s high % of stored fine sediments phased removal coarse delta ephemeral flow 	infrastructure within reservoir deposit or along margins at risk for bank erosion; fish passage needs or sensitive habitats
	Downstream aggradation	6	high V* proximal to dam	low-lying properties; transportation infrastructure; pump intakes; fish passage needs
j	Elevated turbidity	7	 high % of stored fine sediments high V* (sediment stored/load) rapid reservoir drawdown 	sensitive aquatic organisms; human recreational uses; drinking water intakes
	Drawdown impacts on local water infrastructure	5	large drop in water surface elevation high degree of connectivity between the reservoir, river, and groundwater regionally deep water table	wells or intakes in the reservoir vicinity
	Non-native plant colonization of reservoirs	23	 proximity to non-native seed sources high % of stored fine sediments no planting or weed control 	legal requirements for noxious weed and/or invasive species control; stakeholder values
	Non-native fish	7	abundance and proximity of non-native fish availability of suitable habitat and temperatures for non-natives	state fisheries regulations or management plans; stakeholder values

Summary

- Data for our seven CMCs not sufficient for broadly applicable conclusions about future occurrence
- But....do reveal biophysical controls on CMC occurrence
- Practitioners can effectively evaluate CMC risks by:
 - Assess likelihood of relevant biophysical phenomena
 - Investigate consequences to ecological or human use concerns important to stakeholders
 - Consider risks for multiple CMC occurrence via common biophysical controls


Guidelines for Estimating Costs of Dam Removal

Goal: Develop a process to estimate the cost of a dam removal at a concept level for comparing alternatives and initial funding requests

• Categories:

- Low-head diversion dams with limited water and sediment storage relative to average annual flow (small hydrologic impact) and incoming sediment load (single storm event)
- Large dams with high water and sediment storage relative to average annual flow (alters hydrology) and incoming sediment load (years to decades and often not full)

Guidelines for Estimating Costs of Dam Removal

- Cost drivers: cultural concerns, aesthetics, access, contaminants, water users, sensitive species, landowners, mitigation needed
- Geographic location: local regulatory requirements
 - Fish passage
 - Water quality
 - In-water work periods

Next Steps

- Form collaborator team with engineers, cost estimators, ecologists
 - Bureau of Reclamation
 - U.S. Geological Survey
 - U.S Army Corps of Engineers
 - Oregon State
 - U.S. Society of Dams Decommissioning Committee
- Establish metrics and steps to estimate costs
- Gather case study data and test metrics
- Adjust costs to common timeframe (e.g. 2021)
- Low-head guidance (asset management assessments)
- Large dam guidance (dam safety assessments)

