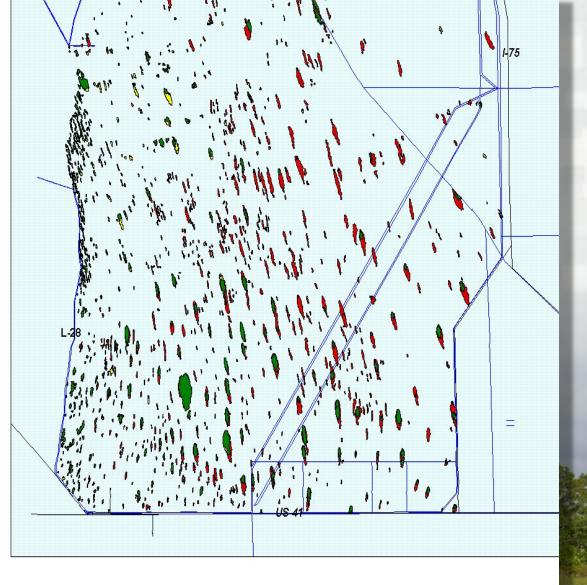

Everglades Adaptive Management

Presented by: Andrew LoSchiavo, Jacksonville District Planning and Policy Division

BUILDING STRONG[®]

Overview

- Everglades Overview
- Everglades Adaptive Management Program
- Detailed Adaptive Management Example (Time and Interest Permitting)



US ARMY CORPS OF ENGINEERS | Jacksonville District

An Ecosystem in Trouble....

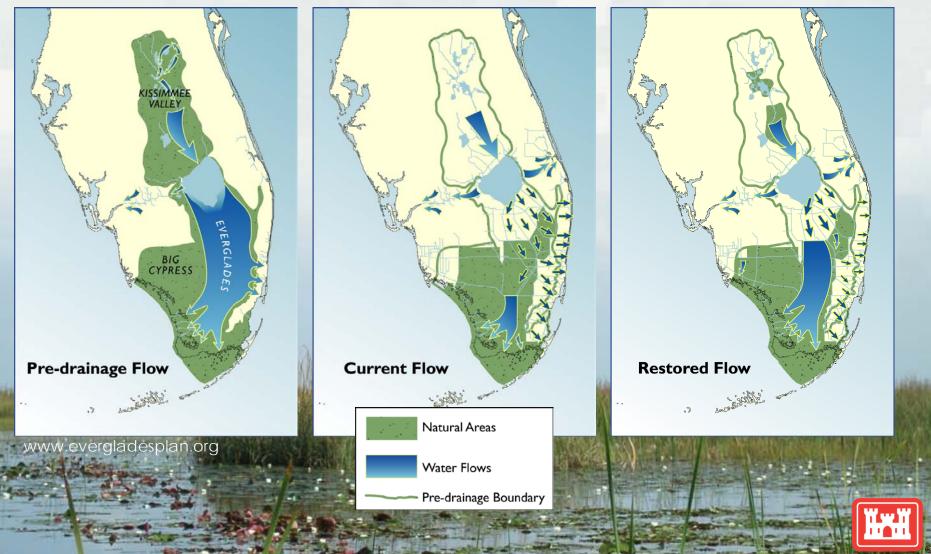
- Too much or too little water for the South Florida ecosystem
- 50 percent reduction in spatial extent of natural system
- Declining estuary health
- Massive reductions in wading bird populations
- Degradation of water quality
- Loss of native habitat to invasive exotic vegetation
- 68 federally-listed threatened and endangered species
- Repetitive water shortages and salt water intrusion

Tree Island Loss from 1940-2004

Tree Islands 1940's to 1995 Tree Islands Gain Tree Islands Loss Tree Islands No Change Out A / Roads 0

Canals

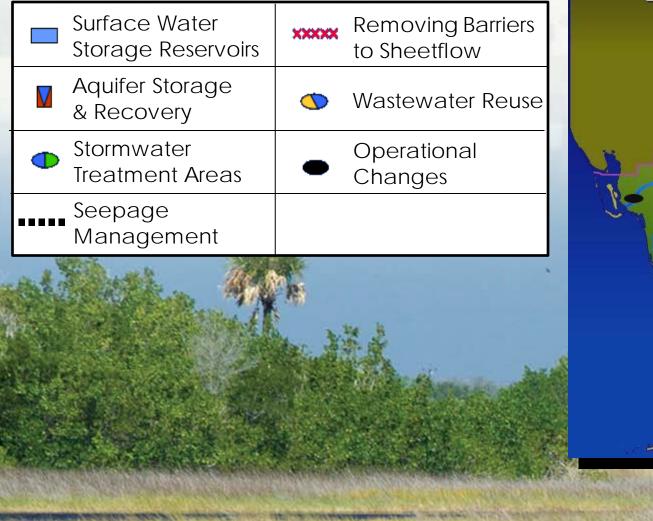
Stateplane Coordinate System Datum: Nad83, Zone 3601 (Florida East) Map Unit: Feet, Spheroid: GRS80


15

20 Miles

US ARMY CORPS OF ENGINEERS | Jacksonville District

W w Y


Comprehensive Everglades Restoration Plan (CERP) Goal

BUILDING STRONG®

Comprehensive Everglades Restoration Plan

68 components to be implemented over 35 years including the following features:

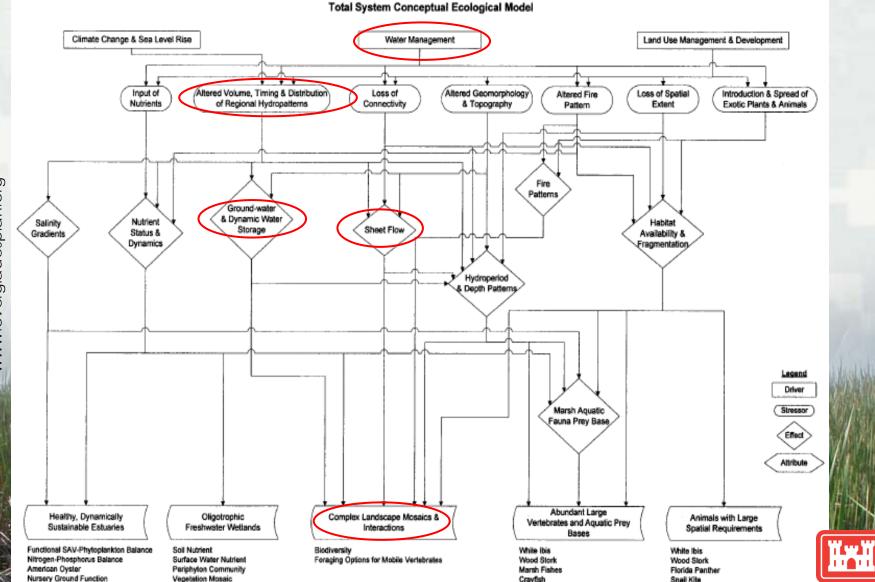
Foundations of Everglades Program

- 1992-1999 Science Foundation for CERP Adaptive Management (AM)
- 2000 WRDA Authorized CERP and Adaptive Assessment and Monitoring
- 2003 CERP Programmatic Regulations required development of AM Program

Everglades Adaptive Management Program

- Integration of Science Program and project plans and implementation
- <u>Evaluation</u> Models, performance measures, interim goals and targets
- <u>Assessment</u> Monitoring and reporting and ecosystem status
- PEER Review National Research Council Supports Everglades AM

PROGRESS TOWARD RESTORING THE EVERGLADE The Tree Research over - 200

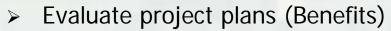

divatio,

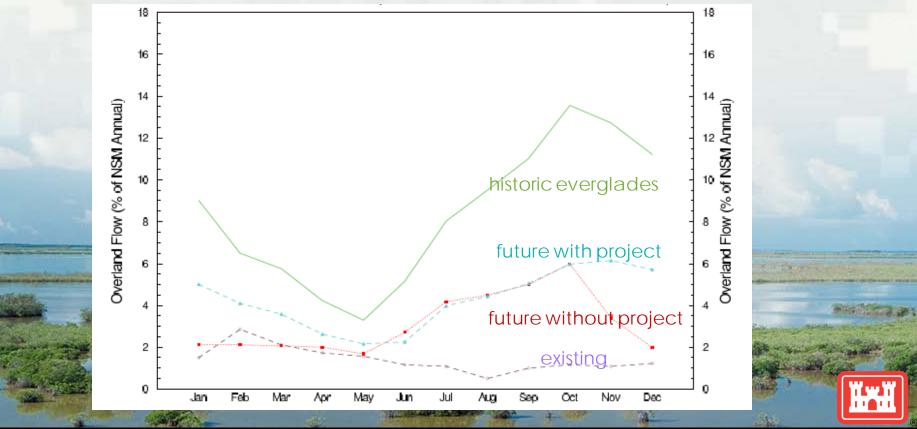
science

integ

A DECK

Conceptual Models Integrate Science with Planning




US ARMY CORPS OF ENGINEERS | Jacksonville District

www.evergladesplan.org

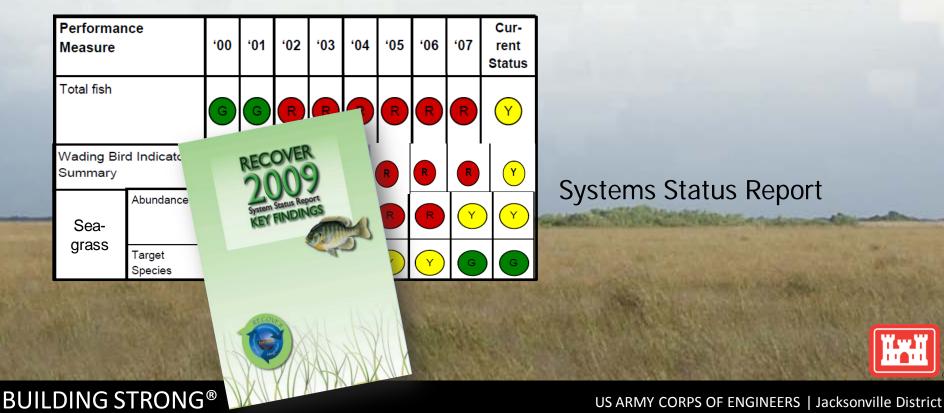
Evaluation

- Modeling Tools and Performance Measures
 - What Everglades Was: Data and modeling synthesis to understand historic Everglades
 - What It Could-Should Be: Restoration targets and interim goals

BUILDING STRONG®

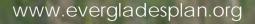
Incremental Implementation of CERP

		Total Project Cost												
	oject	(\$M)	\Box	2010	2011	2012	2013	3 2014	2015	2016	2017	2018	2019	2020
	Seminole Big Cypress	\$60				-								
2	West Palm Beach Canal/STA-1E	\$318	C											
3	C-111 Spreader Canal	\$154		<u> </u>										
\Box	Design Test	\$2			-•			T						
\Box	Western Project	\$150				—								
	L-31N Seepage Management Pilot Project	\$16		<u> </u>		TOBE	DET	ERMINE	D					
	C-111 South Dade	\$391					-	T			-•			
	Kissimmee River Restoration	\$636				<u> </u>	<u> </u>							
7	Modified Water Deliveries to Everglades National Park	\$414		<u> </u>			Γ	Τ						
\Box	Tamiami Trail Modifications	\$113	2				-	T						
\Box	Conveyance and Seepage Control Features	\$51		<u> </u>		-	-	Τ						
8	Picayune Strand Restoration	\$448	3				T	T						
\Box	Merritt Pump Station	\$65				-		T						
\Box	Faka Union Pump Station	\$100												
\square	Flood Protection Features	\$30		L'		•			L					
Ļ	Miller Pump Station	\$75			L	L					_	\square		\square
	Lakeside Ranch STA Phase 1	\$105				<u> </u>			L	100				<u> </u>
10	Site 1 Impoundment	\$109	4_'	<u> </u>					L	nu				
\square	Phase 1		Ľ							Ma				
ĻĻ	Phase 2		Ł	L'	-					0				
11	Indian River Lagoon-South	\$1,882		 '					L	tin				الللية
\Box	C-44 Intake Canal	\$45		'	•		1			ra				
\square	C-44 Reservoir	\$205		[است
\Box	C-44 STA	\$115		'					•	c		—•		
12	Biscayne Bay Coastal Wetlands	\$595		'						er				
\Box	Phase 1	\$162			-			•		-				
	Water Conservation Area 3 Decompartmentalization and Sheetflow	\$390	1	/						5				
Ľ	Enhancement (Decomp)	••••		/				-						
\Box	Decomp Physical Model	\$10		'	•	<u> </u>								
ت	Decomp Part 1	\$196		<u> </u>		L	T	T		-	—		—	
\Box	Decomp Part 2	\$133		/										
\Box	Decomp Part 3	\$52		<u> </u>		Γ								
14	Caloosahatchee River (C-43)	\$977		<u> </u>			Γ				T			
	West Basin Storage Reservoir	\$595		<u> </u>		TO B	E DET	ERMIN	ED		T			
	Melaleuca Eradication and Other Exotic Plants	\$17	_	<u> </u>	•	-		T						
16	Broward County Water Preserve Areas	\$901	\mathbb{L}'	<u> </u>										
\Box	C-11 Impoundment		Ľ	\Box		—		Τ	•		—			
\Box	WCA 3A&3B Levee/S-356		\Box'	<u> </u>										
\Box	C-9 Impoundment		\Box'	[Γ	Γ	T						
17	North Palm Beach County Part 1	\$287				—		T						
18	ENP Seepage Management	\$532	_	<u> </u>										
	Lake Okeechobee Watershed	\$1,561		<u> </u>										
	Herbert Hoover Dike Rehabilitation	\$991	C					-						
21	Long-Term Plan for Achieving Water Quality Goals	\$1,500	Γ					T						
21	in the Everglades Protection Area Projects (100% State)	\$1,500	12			1	1	1				l/	[]	[]
00	Central Everglades Storage Project	TBD				TOR	E DET	ERMIN	ED		-			


Projects are currently non-federal construction, subject to change based on further authorization and funding.

Construction has started on these projects.

۲


Monitoring and Assessment Program

- What Everglades Is (Present): Assess ecosystem status
- Hypothesis (What we expect from projects)
- What It Is (Future): Verify restoration success and/or performance issues
- New knowledge to adjust and improve implementation

Why Use Adaptive Management?

- Reduce risk of not meeting ecosystem restoration goals
- Builds shared understanding and stakeholder support
- Formalizes activities done in good planning and project management to address uncertainty
- New knowledge (learning) to improve current/future projects and program implementation, and operations

Law and Policies

• Everglades:

- WRDA 2000 and 2003 CERP Programmatic Regulations
- USACE Wide:
 - WRDA 2007 (Missouri River, Louisiana Coastal Area, Upper Mississippi)
 - 2009 HQ Guidance on WRDA 2007
 - Section 2039 (Ecosystem Restoration Projects)
 - Section 2036 (Wetland Mitigation Plans)

National Technical Guidance

- 2004 National Research Council (NRC)
 - Adaptive Management for Water Resources Project Planning
- 2009 Department of Interior AM Technical Guide
- 2012 Council on Environmental Quality Adaptive Management Benchmarks for Climate Change

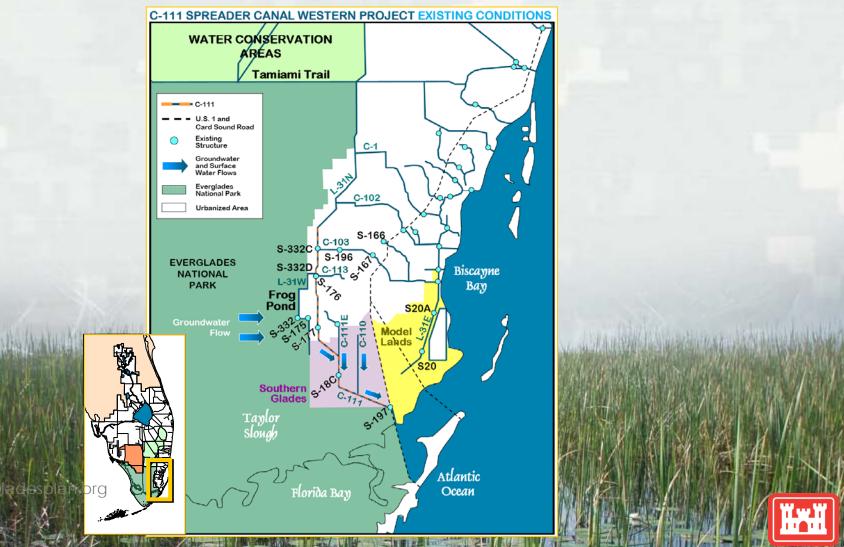
Everglades Adaptive Management Products

- 2004 Monitoring and Assessment Plan (MAP)
- 2006 CERP Adaptive Management Strategy
- 2010 CERP Adaptive Management Integration Guide (Developed 9 AM Activities)
- 2011 CERP Guidance Memorandum 56 on Integrating Adaptive Management Activities into Project and Program Management
 - Several Project Level Adaptive Management Plans

mprehensive des Restoration Plan

erica's Everglades

Project – Level Adaptive Management


Project	Life-Cycle Phase	Adaptive Management Plan	Adaptive Management Features			
Aquifer Storage Recovery	Pilot Project and Planning	No	Testing Pilot Projects and Sensitivity Modeling			
Decomp	Pilot Project and Planning	Yes	Decomp Physical Model and PIR 1 AM Plan			
C-111 SC	Pilot Project and Chief's Report	No	Design Test and Operational Tests			
Biscayne Bay Coastal Wetlands	Chief's Report	Yes	Post Construction Contingency Options			
Indian River Lagoon – South	Construction	No	Project Sequencing Adjustments			
Broward County Water Preserve Areas	Design	Yes	Operational Options and Design Improvements			
Melaleuca	Implementation	No	AM Implementation Strategy			
Picayune Strand	Construction	No	Construction Improvements and Vegetation Management			

US ARMY CORPS OF ENGINEERS | Jacksonville District

H.w.H

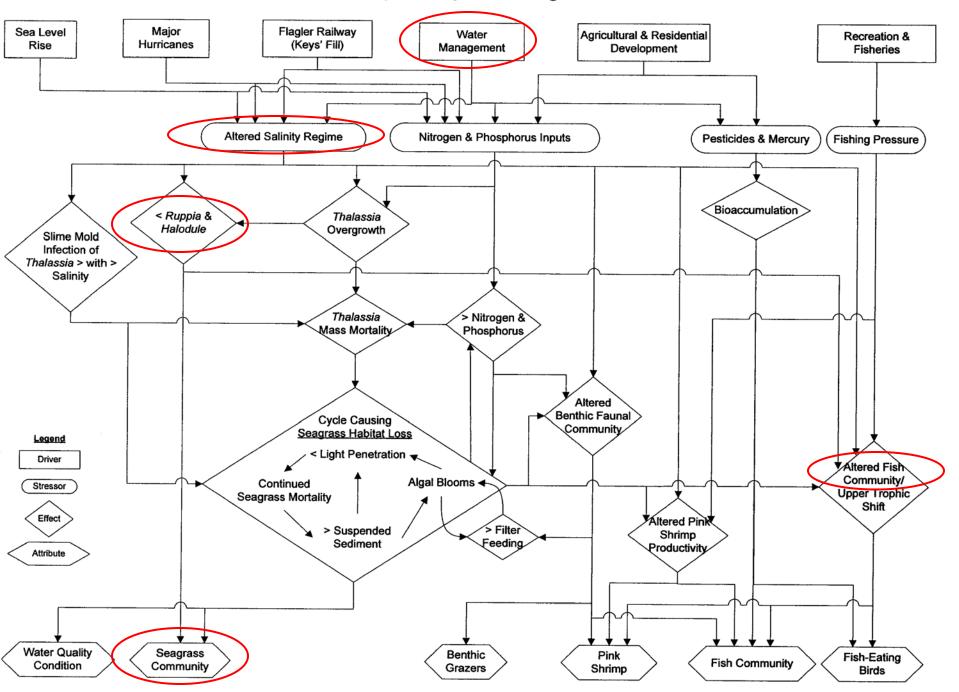
C-111 Spreader Canal Detailed Project Example

BUILDING STRONG®

Activity 1: Engage Stakeholders and Collaborate with Agencies

- Key stakeholders and values issues identified
- SFWMD stakeholder workshops to communicate and build support
- Interagency support (Project Delivery Teams)

BUILDING STRONG®

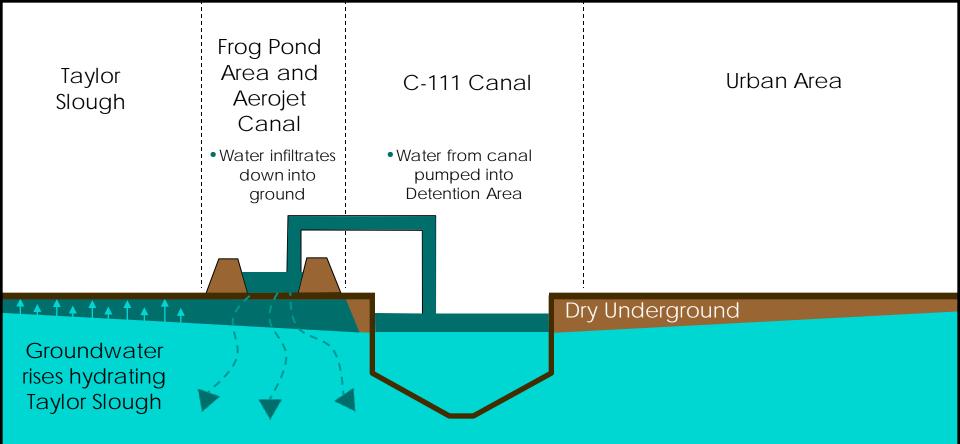

Activity 2: Goals and Objectives

Planning Step 1: Specify Problems and Opportunities

- Confirm and refine project goals and objectives
- Ensure project planning consistency with system-wide goals
- Define restoration success and vision

Florida Bay Conceptual Ecological Model

Activity 3: Uncertainties Identification Planning Steps 1 and 2: Identify and Forecast Conditions


- Identify unanswered questions (uncertainties)
 - How effective will project (Frog Pond and Aerojet Canal) operations be to control seepage and increase hydroperiods in Taylor Slough?
 - Will flood control and endangered species constraints be violated?
 - What is the best spreader canal design in Southern Glades/Model Lands?
 - How much water (quantity and timing) is needed to restore longer hydroperiods in Taylor Slough?
 - Will hydroperiods result in anticipated salinity changes in freshwater and nearshore areas?
- Prioritize uncertainties
- Obtain management concurrence on strategies to address questions

Activity 4: Hypothesis Planning Steps 2 and 3: Formulate Alternative Plans

- H1 (Project Operations):
 - Incremental Canal stage changes will not increase agricultural flooding risk
 - Will reduce C-111 canal influence on Taylor Slough water levels (increase hydroperiods)
- H2 (Freshwater Upper Slough):
 - Longer hydroperiods will result in a vegetation community shift towards Everglades marsh species
 - H3 (Nearshore Down Stream):
 - Longer hydroperiods will result in desired salinity ranges and improve conditions for key ecological indicators (Seagrasses, Crocodiles, Fish)

Excess water

BUILDING STRONG®

Hydraulic Ridge Concept

Detention area used to infiltrate water into ground and artificially raise groundwater table

Activity 4: Performance Measures

Planning Steps 4: Evaluate Plans (compare to pre-project conditions)

- Performance Measures (PM): Predictive tools and target development
 - PM 1 (Project Operations): Taylor Slough Stages show limited change when canal operates
 - PM 2 (Freshwater): Hydroperiods in Taylor Slough are 30 percent longer
 - PM 3 (Freshwater): Graminoid vegetation species increase and woody/herbaceous vegetation will decrease
 - PM 4 (Nearshore): Salinity ranges gradually decrease to meet 10-20 ppt range
 - PM 5 (Nearshore): SAV increases in area, biomass, and species

Activity 5: Alternative Plan Design and Implementation

Planning Steps 3, 4 and 5: Comparing Plans

- Project operational tests (Frog Pond and Aerojet Canal)
- Design tests
- Project Implementation Report (PIR) 1 and Design Test Implementation will inform planning/design of PIR 2

Activity 6: Management Option Matrix Part of Adaptive Management Plan

Planning Steps 3-6: Evaluation, Comparison, Selection

Stressor Metric Target		Management OPTION 1	Management OPTION 2	Program Management OPTION 3		
Seepage Control	Maintain stages in Taylor Slough	Increase Frog Pond Stages	Increase Aerojet Canal Stages	System-wide/Regional issue (need additional water)		
Salinity	Taylor River (0- 9ppt); L. Madeira Bay (12-22 ppt) Terrapin Bay (12- 26ppt)	Increase C-111 Stages	Adjust operations	System-wide/Regional issue (need additional water)		
Seagrass Species and Area (SAV performance measure)	Seagrass Species and Area Increase Ruppia and Halodule species presence	Adjust operations to even salinity range transition and decrease salinities	Adjust Water Quality Source Control Measures	Targeted Seagrass Plantings		
Wetland macro vegetation	Narrow mangrove fringe along shoreline; graminoid marsh inland from mangrove	Provide a more natural fire regime to promote and maintain graminoid marsh community	Physically remove forested wetland vegetation to promote growth and establishment of graminoids			

BUILDING STRONG®

Activity 6: Monitoring Planning Step 6: Part of PIR

- Monitoring plans designed to confirm or refute Hypotheses
- Verify project success (benefits-HUs)
- Monitoring plan coordination and cost constraints
 - Example: System-wide (MAP) monitoring for salinity can be used for project

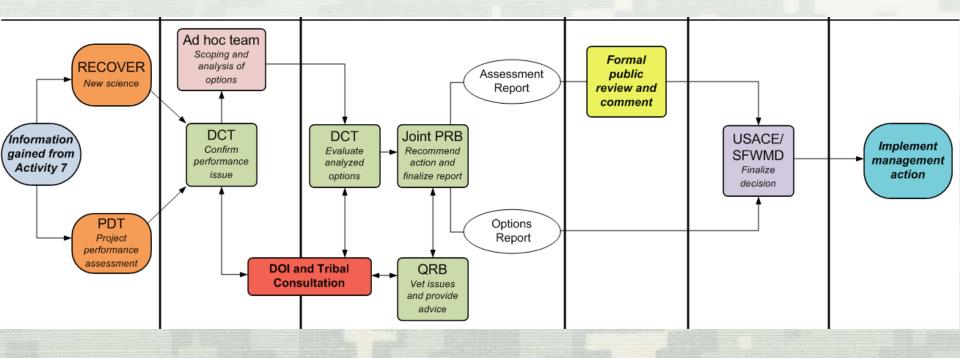
Activity 7: Assessment During Design - Construction - Operations

Project-level monitoring and assessment

- Contract management and data management
- Synthesize data and report at system and management relevant timeframes

Eastern Florida Bay	Y	R	G	Y	R	Status was poor in 2009 versus the historical record.
North-Central Florida Bay	G	R	R	R	R	Poor performance exhibited in four of five MAP years.
South-Central Florida Bay	R	R	R	R	R	This is the worst performing of six areas in fall.

BUILDING STRONG®


Activity 8: Decision-making

- Science-Management Interface (Forum) and timing of decisions will vary depending on several factors
 - Timing of restoration indicator response
 - Spatial scale of restoration performance issues
 - Urgency to correct performance issue
 - Type of management action

Activity 8: Decision-making continued

- Stakeholder Feedback Forums
- Management Forums
 - Discuss performance issues or success

BUILDING STRONG®

CERP Program and **Project Interaction**

Coastal Gradients RECOVER – USGS

Crocodile Transect Surveys – UF

Coastal Gradients Other – USGS

 Everglades Depth and Elevation Network (EDEN) - USGS

•Fish and Invertebrate – **USGS/NOAA**

- •FL Bay Seagrass FWC
- Coastal Bay Seagrass DERM
- Seatrout (sportfish) NOAA
- Spoonbill Trophic Sampling -Audubon

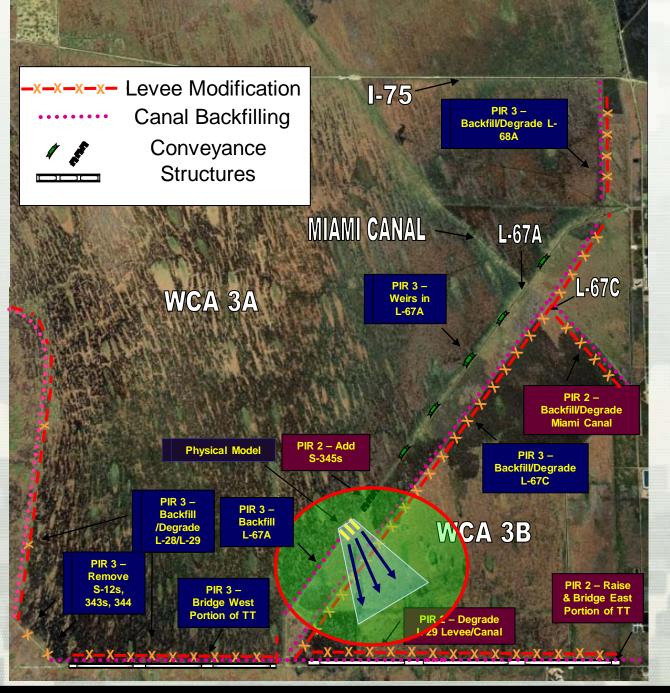
BUILDING STRONG®

Decomp Project with High Uncertainty Using Physical Model to Inform Planning and Design

Goals for Decomp

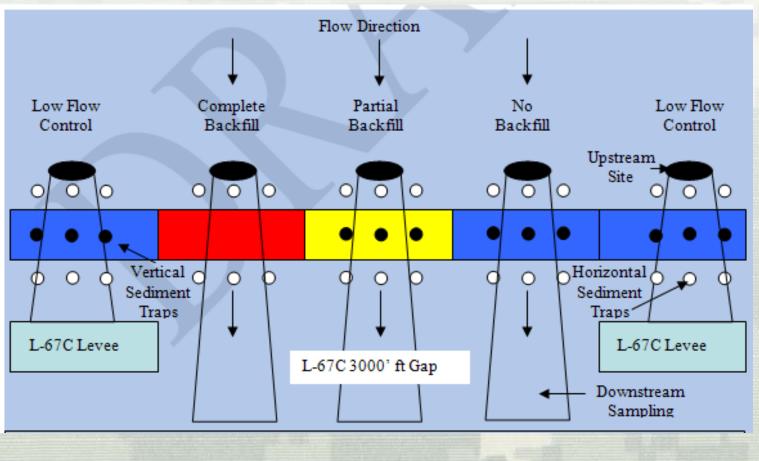
- Improve sheet flow, hydropatterns, and hydroperiods within WCA-3 and ENP
- Restore, maintain, and sustain ridge and slough topography
- Increase the spatial extent and restore vegetative composition, habitat function, and productivity of tree islands, and help compensate for past losses
- Restore peat soils, depth and micro-topography

Key Restoration Uncertainties


- Is complete backfilling of canals an ecological and hydrologic necessity? Are partial backfilling and no backfilling of canals viable options?
- What are the quantifiable ecological benefits of sheet flow and ecosystem connectivity?

Risk

- Not Implementing Best Design to Achieve Restoration Goals
- Not Having Information to Defend Restoration Actions in Court



DECOMP Physical Model

US ARMY CORPS OF ENGINEERS | Jacksonville District

Inform Planning and Design

- Uses Before and After Control Impact (BACI) Test
- Determine Best Design
- Update Models to Evaluate Benefits

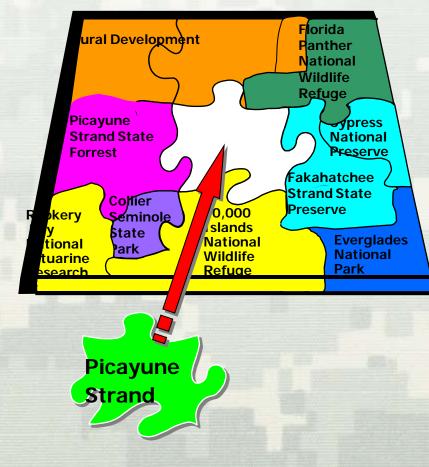
BUILDING STRONG®

Performance Measures

Evaluate design that best achieves:

- Marsh Stages and Flow velocity (Increase flow- 3cm/s)
- Sediment Transport (Increase)
- Dissolved Oxygen (Water Quality)
- Vegetation (Obstructions to Flow)
- Total Phosphorus-Periphyton Changes (Water Quality)
- Fish assemblage (Sport species, Invasives, Natural)
- Aquatic Fauna (Increases of Benthic Prey Availability)

Picayune Strand Example of restoration project with low scientific uncertainty


Picayune Strand Restoration

BUILDING STRONG®

The "Missing Piece" of the Puzzle

Restores ecological connectivity between publicly owned lands

Project Goals

Picayune Strand ecosystem restoration requires the achievement of three goals:

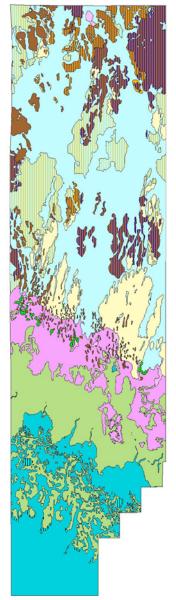
- 1. Restore natural hydropatterns, including sheet flow
- 2. Control exotic and nuisance plants in Picayune Strand State Forest to reestablish natural plant communities
- 3. Manage Picayune Strand State Forest to reestablish a natural fire regime

Uncertainty and Risk

• Uncertainty:

 Scientific uncertainty is low if project and state forest is managed according to project goals

Limited Flexibility:


Range of operational and design change options is limited

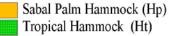
Risk:

 Restore hydroperiods and not meet restoration goals and objectives because nuisance vegetation remains

Vegetation Management

BUILDING STRONG®

Year 1940


CYPRESS

Cypress (C) Cypress with palms (Cp)

PRAIRIE

Wet Prairie (G)

НАММОСК

FLATWOODS

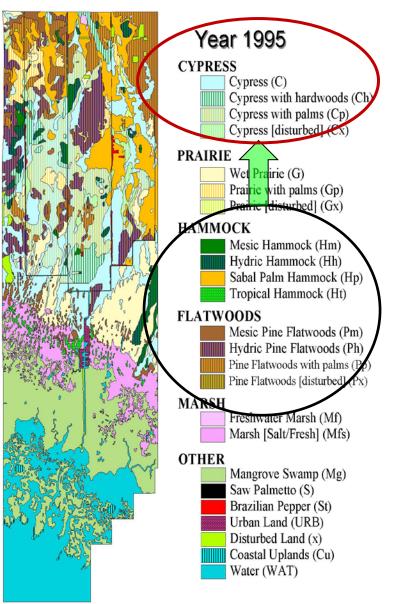
M H P

- Mesic Pine Flatwoods (Pm) Hydric Pine Flatwoods (Ph)
- Pine Flatwoods with palms (Pp)

MARSH

Freshwater Marsh (Mf) Salt Marsh (Ms)

OTHER



Mangrove Swamp (Mg)

Coastal Uplands (Cu)

Water (WAT)

- Remove Upland Vegetation
- Fire Management
- Achieve Marsh Wetland Vegetation
- Achieve Cypress Forest

