Hydrologic Connectivity of Migratory Fauna in Puerto Rico

ERDC Engineer Research and Development Center

Kyle McKay and Jessica Chappell 601-415-7160 Kyle.McKay@usace.army.mil

USACE Webinar January 27, 2015

US Army Corps of Engineers.

Presentation Overview

- Overview of hydrologic connectivity
- A case study in quantifying connectivity in Puerto Rico
 - Amazing migratory fauna
 - Establishing hydrologic conditions
 - Quantifying connectivity
 - Temporally varying connectivity
 - Trade-offs among species
 - Approaches for restoring connectivity
- Broader lessons in connectivity

Hydrologic Connectivity

BUILDING STRONG®

ERDC

Hydrologic connectivity is the "water-mediated transfer of matter, energy, and/or organisms within or between elements of the hydrologic cycle."

- Pringle (2001, Ecological Applications)

BUILDING STRONG_®

Innovative solutions for a safer, better world

Figures: Poole (2010), Kondolf et al. (2008), UGA-OVPR, Poole (2002)

We've systematically disconnected our watersheds!

BUILDING STRONG®

Innovative solutions for a safer, better world

Figures: USACE National Inventory of Dams, Nancy Gleason, Sacramento River, Plant Vogtle (Glynn Environmental), McKay

ERDC Research Project

- Our fundamental premise: Connectivity must be assessed relative to the objectives and dimensionality of a given problem
- Focus of our research
 - General principles for conceptualizing and quantifying connectivity: dimensionality, biotic v. abiotic, structural v. functional,...
 - Organism-centric case studies: tropical stream migrants, oyster reefs (pros and cons)
 - Transport-mediated case studies: nutrient uptake on the MS River, channel dynamics and riparian vegetation in the arid southwest
 - Restoration of connectivity: dam operation, dam removal, sequencing matters

Innovative solutions for a safer, better world

BUILDING STRONG® Figures: Swannack, Theiling

Puerto Rico's Amazing Animal Migrations

BUILDING STRONG_®

ERDC

El Yunque National Forest, Puerto Rico

- Long history of scientific studies: USFS-IITF, NSF (long-term ecological research, critical zone observatory), USGS,...
- Forest supplies water for 20% of Puerto Rico's population
- Only tropical forest managed by the US Forest Service

Tropical Migratory Fauna

9

- Abundance of migratory life histories!
 - Freshwater shrimp
 - Snails
 - ► Gobi
 - Mullet
 - American eel
- Longitudinal pathways are crucial to survival

Adaptation to Migration

Juvenile shrimp climb

Mountain mullet jump

Sirajo goby use suctioning pelvic fins

Snails use low velocity channel margins

ERDC

Innovative solutions for a safer, better world

10 Figures: Jon Benstead, Patrick Cooney, David Herasimtschuk

Disconnecting a Resilient Migration

- Large dams can be built at high densities in the tropics
- Water withdrawals and associated small dams are the primary influence in El Yunque
- Massive water withdrawal (over 50% of freshwater not reaching the ocean, Crook et al. 2007)

11 Figures: Greathouse et al. (2006), Kelly Crook, Jessica Chappell

Withdrawal and Shrimp Connectivity

Downstream Larval Drift

Upstream Juvenile Migration

Spillage creates an analog to waterfalls!

Innovative solutions for a safer, better world

BUILDING STRONG_®

A Hydrologic Basis for Connectivity (Dr. Jason Christian and Joel Martin)

- Developing runoff and intake estimates at each structure
- Mass balance water budgets in 1994, 2004, and 2014
- Estimating withdrawal rates using intake records, structure capacity, permitted rates, and municipal service areas
 - Developing predictive unit hydrograph approach

Innovative solutions for a safer, better world Figures: Jason Christian

BUILDING STRONG®

Quantifying the cumulative effect of multiple barriers on connectivity

Innovative solutions for a safer, better world

BUILDING STRONG_®

Barrier	Passage Rate	Cumulative Passage Rate			
А	0.5	0.5			
В	0.4	0.2			

BUILDING STRONG®

BUILDING STRONG®

BUILDING STRONG®

Analysis #1: **Temporally Varying Connectivity**

Natural Fluctuation

Seasonal: wet v. dry season Annual: wet v. dry year

Tracking Lost Connectivity

Declines over time with increased intake Comparison across 9 watersheds

Innovative solutions for a safer, better world

Figure: Expected patterns in Puerto Rico

Analysis #2: Community view of connectivity

- Parameterizing for unique physiological capability and life history needs
 - Shrimp (Benstead, March, Pringle, Covich, Crook, et al.)
 - ▶ Blanco and Scatena (2005/6)
 - Cooney and Kwak (2013)
- Some species may be more resilient to disconnection or increased withdrawal
- Community-wide view of connectivity (rather than a single species perspective)

BUILDING STRONG®

19 Figure: Expected outcomes, Adapted from Cooney and Kwak (2013)

Connectivity Restoration Strategies

20

- Operating structures to reduce connectivity impacts
 - Timing matters for migration: Seasonal? Moon phase? Hourly?
 - Environmental flow analog
- Spatial arrangement of dams
 - Construction / permitting
 - Restoration / removal
- Effect of connectivity index on decision-making
 - Upstream v. Up-Down
 - ► Cote v. O'Hanley v. McKay

Figures: Benstead et al. (1999), Richter et al. (2010)

BUILDING STRONG_®

Lessons Learned from our Case Study

BUILDING STRONG_®

ERDC

Key Outcomes of the PR Case Study

- Direct application of results
 - Permitting and restoration in Puerto Rico, Hawaii, & Guam
 - American eel assessments
- Developing and demonstrating a suite of connectivity assessment methods
 - Moving beyond a fish-only view of connectivity
 - Time-varying properties of connectivity
 - Coupling connectivity and hydrology
 - Trade-offs between species (community-level perspective)
 - Operational effects on connectivity

BUILDING STRONG®

ERDC

Does connectivity matter?

- Connectivity is one of seven budget criteria used for project ranking
 - Need a suite of methods for objectively quantifying and informing rankings
- USACE projects could be operated or adaptively managed for connectivity benefits (e.g., river-floodplain connection)
- Techniques may also transfer to regulatory decision making associated with multiple, interacting mitigation projects

	PROGRAM NAME	CONNECTIVITY CONNECTIVITY DOCUMENTATION	SPECIAL STATUS SPECIES	SPECIAL STATUS SPECIES DOCUMENTATION	HYDRO LOGIC CHARA CTER	HYDROLOGIC CHARACTER DOCUMENTATION	
4	COASTAL MISSISSIPPI HURRICANE AND STORM DAMAGE PROTECTION STUDY, MS	18) Restores vital link of habitat to establish large areast for animal migration use including Ms Flyway confort, which provides valuable establish estimation feeding habitat/federally protected species	s 10	Emergent tidal marsh is EFH for red drum, Span mackerel, whitebrown shrimp. Fed lated Gulf Sturgeon feed upon numerous species that depend upon tidal marsh as nursery & cover.	20	Restores historic hydrology in coastal MS by re- establishing conditions condusive to more productive wetlands that fifter polutants from runoff/flood waters and storage capacity and re- establishing historic hydrologic connections. These areas provide less fragmentation for the overall coast.	
4	COASTAL MISSISSIPPI HURRICANE AND STORM DAMAGE PROTECTION STUDY, MS	18 Restores vital ink of habitat for stabilish large areas for animal migratic use including bits Pryway corridor, which provides valuable essential resting feeding habitat/redenally protected species	s 10	Restored areas will provide critical habitat for MS Sanchill Cransend Guill Sturgeon Imergent Idal marah is EFH for numerous fish & shelfish	20	Restores historic hydrology in cosstal MS by re- establishing conditions condusive to more productive wetlands that fifter pollutants from runorff/flood waters and storage capacity and re- establishing historic hydrologic connectons These areas provide less fragmentation for the overall coast.	
	COASTAL MISSISSIPPI HURRICANE AND STORM DAMAGE PROTECTION STUDY, MS	18 Restores vital link of habitat to establish large areas for annia migration use including Ms Flyway corridor, which provides vabualle establish resting feeding habitat/federally protected species	10	Restored areas will provide critical habitat for the federally protected species, MS Sandhill Crane. Emergent tidal marsh is EPH for numerous fish & shelfish.	20	Restores historic hydrology in coastal MS by re- establishing conditions conclusive to more productive veltaineds that fifter poliutaris from runof/flood waters and storage capacity and re- establishing historic hydrologic comections. These areas provide less fragmentation for the overall coast.	

ERDC

Innovative solutions for a safer, better world

BUILDING STRONG®

Questions and Feedback

Take-away Points:

- Hydrologic connectivity is much larger than fish passage
- This project focuses on tools, techniques, and demonstrations
- Connectivity often fluctuates naturally through time
- Declines in connectivity can be measured using multiple indices
- Migratory communities are a next step in extending USACE analysis of connectivity

Acknowledgements

- A big thank you Jessica Chappell for photos and slides!
- UGA team: Cathy Pringle, Jason Christian, & Joel Martin
- USACE Ecosystem Management and Restoration Research Program <u>http://el.erdc.usace.army.mil/emrrp/</u>
- US Forest Service

<u>Contact Information</u> Kyle McKay 601-415-7160 <u>Kyle.McKay@usace.army.mil</u>

